数学 百文网手机站

初中奥数练习题

时间:2021-07-06 19:10:56 数学 我要投稿

初中奥数练习题

初中奥数练习题1

  1.下列各式中,不是整式的是 ( )

  A.3a B.2x=1 C.0 D.x+y

  2. 下列说法正 确的是( )

  A、 是单项式 B、 没有系数

  C、 是一次一项式 D、3不是单项式

  3.用整式表示“比a的平方的一半小1的数”是 ( )

  A. ( a) B. a -1 C. (a-1) D. ( a-1)

  4.在整式5abc,-7x +1,- ,21 , 中,单项式共有 ( )

  A.1个 B.2个 C .3个 D.4个

  5.已知15m n和- m n是同类项,则∣2-4x∣+∣4x-1∣的值为 ( )

  A.1 B.3 C.8x-3 D.13

  6.已知-x+3y=5,则5(x-3y) -8(x-3y)-5的值为 ( )

  A.80 B.-170 C.160 D.60

  7.下列整式的运算中,结果正确的是 ( )

  A.3+x=3x B.y+y+y=y C.6ab-ab=6 D.- st+0.25st=0

  8. 如果 是三次多项式, 是三次多项式,那么 一定是 ( )

  A、六次多项式 B、次数不高于三的整式

  C、三次多项式 D、次数不低于三的整式

初中奥数练习题2

  三角形中的恒等式:

  对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC

  证明:

  已知(A+B)=(π-C)

  所以tan(A+B)=tan(π-C)

  则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ

  定义域和值域

  sin(x),cos(x)的定义域为R,值域为[-1,1]。

  tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。

  cot(x)的定义域为x不等于kπ(k∈Z),值域为R。

  y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a2+b2) , c+√(a2+b2)]

初中奥数练习题3

  1.甲、乙两人在A、B两地同时相向出发,4小时后在中间8公里处相遇,甲的速度是每小时8公里,求乙的速度?

  2.甲、乙两人在圆形池周围练竞走,水池周长7200公尺,甲乙以每分钟180公尺、120公尺的速度同时出发,几分钟后利润相遇?

  3.利润骑自行车从同一地点出发,沿周长900公里的环形路,若反向而行2分钟就相遇,若同向而行经过18分快者追上慢者,求慢者的速度?

  4.甲、乙两架飞机从一个机场起飞,向同一方向飞行,甲、乙速度为每小时300公里和340公里,飞行4小时后,甲机要提速,2小时后追上乙,问甲的速度?

  5.兄妹利润同时从家出发上学,兄妹的速度为每分钟90公尺和60公尺,兄到达校门时发现忘带语文书,立即按原速原路返回,在离学校180公尺处与妹妹相遇,他们家距学校多远?

  6.甲、乙两人练习跑步,若甲让乙先跑10公尺,则甲跑5秒钟追上乙,若甲让乙先跑2秒,则甲跑4秒钟就追上乙,求甲的速度?

  7.甲、乙两人在400公尺长的环形跑道上跑步,甲以每分钟300公尺的速度从起点跑出1分钟时,乙从起点同向跑出,从这时起甲用5分钟赶上乙,乙每分钟跑多少公尺?

  8.甲、乙两人同时从A点背向出发沿400公尺环形跑道行走,甲每分钟走80公尺,乙每分钟走50公尺,这二人最少用多少分钟再在A点相遇?

  9.狗追狐狸,狗跳一次前进18公尺,狐狸跳一次前进11公尺,狗每跳两次时狐狸恰好跳3次,如果开始时狗离狐狸有30公尺,那么狗跳多少公尺才能追上狐狸?

  10.甲、乙二人在周长是120公尺的圆池塘边散步,甲每分钟走8公尺,乙每分钟走7公尺,现在从同一地点同时出发,相背而行,出发后到第二次相遇用多少时间?

初中奥数练习题4

  1. 求证: ①(a+b+c)2+(a+b-c)2-(a-b-c)2-(a-b-c)2=8ab

  ②(x+y)4+x4+y4=2(x2+xy+y2)2 ③(x-2y)x3-(y-2x)y3=(x+y)(x-y)3

  ④3 n+2+5 n+2―3 n―5 n=24(5 n+3 n-1) ⑤a5n+a n+1=(a3 n-a2 n+1)(a2 n+a n+1)

  2.己知:a2+b2=2ab 求证:a=b

  3.己知:a+b+c=0

  求证:①a3+a2c+b2c+b3=abc ②a4+b4+c4=2a2b2+2b2c2+2c2a2

  4.己知:a2=a+1 求证:a5=5a+3

  5.己知:x+y-z=0 求证: x3+8y3=z3-6xyz

  6.己知:a2+b2+c2=ab+ac+bc 求证:a=b=c

  7.己知:a∶b=b∶c 求证:(a+b+c)2+a2+b2+c2=2(a+b+c)(a+c)

  8.己知:abc≠0,ab+bc=2ac 求证:

  9.己知: 求证:x+y+z=0

  10.求证:(2x-3)(2x+1)(x2-1)+1是一个完全平方式

  11己知:ax3+bx2+cx+d能被x2+p整除 求证:ad=bc

初中奥数练习题5

  1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?

  还要运x次才能完

  29.5-3*4=2.5x

  17.5=2.5x

  x=7

  还要运7次才能完

  2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

  它的高是x米

  x(7+11)=90*2

  18x=180

  x=10

  它的高是10米

  3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

  这9天中平均每天生产x个

  9x+908=5408

  9x=4500

  x=500

  这9天中平均每天生产500个

  4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

  乙每小时行x千米

  3(45+x)+17=272

  3(45+x)=255

  45+x=85

  x=40

  乙每小时行40千米

  5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

  平均成绩是x分

  40*87.1+42x=85*82

  3484+42x=6970

  42x=3486

  x=83

  平均成绩是83分

  6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

  平均每箱x盒

  10x=250+550

  10x=800

  x=80

  平均每箱80盒

初中奥数练习题6

  1。羊跑5步的时间马跑3步,马跑4步的'距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?

  解:

  根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为4x米。 根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则羊跑5*4x=20米。

  可以得出马与羊的速度比是21x:20x=21:20

  根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的份数是21—20=1,现在求马的21份是多少路程,就是30÷(21—20)×21=630米

  2。甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b两地相距多少千米?

  答案720千米。

  由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10—8)×(10+8)=720千米。

  3。在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

  答案为两人跑一圈各要6分钟和12分钟。

  解:

  600÷12=50,表示哥哥、弟弟的速度差

  600÷4=150,表示哥哥、弟弟的速度和

  (50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数

  (150—50)/2=50,表示较慢的速度,方法是求和差问题中的较小数

  600÷100=6分钟,表示跑的快者用的时间

  600/50=12分钟,表示跑得慢者用的时间

  4。慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间? 答案为53秒

  算式是(140+125)÷(22—17)=53秒

  可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

初中奥数练习题7

  例1:甲,乙两队开挖一条水渠.甲队单独挖要8天完成,乙队单独挖要12天完成.现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成.乙队挖了多少天

  解:可以理解为甲队先做3天后两队合挖的.=3(天)

  例2:加工一批零件,甲单独做20天可以完工,乙单独做30天可以完工.现两队合作来完成这个任务,合作中甲休息了2 .5天,乙休息了若干天,这样共14天完工.乙休息了几天

  解:分析:共14天完工,说明甲做(14-2.5)天,其余是乙做的,用14天减去乙做的天数就是乙休息的天数.14-=1(天)

  例3:一池水,甲,乙两管同时开,5小时灌满,乙,丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲,丙两管同时开2小时才能灌满.乙单独开几小时可以灌满

  解:分析:把乙先开做6小时看作与甲做2小时,与丙做2小时,还有2小时,现在可理解为甲乙同开2小时,乙丙同开2小时,剩下的是乙2小时放的.1÷=20(小时)

  例4:某工程,甲,乙合作1天可以完成全工程的.如果这项工程由甲队单独做2天,再由乙队单独做3天,能完成全工程的.甲,乙两队单独完成这项工程各需要几天

  解:分析:可以理解为两队合作2天,余下的是乙1天做的,乙的工效, 甲:=12(天)

  例5:一项工程,甲先单独做2天,然后与乙合做7天,这样才能完成全工程的一半.已知甲,乙工效的比是2:3.如果这项工程由乙单独做,需要多少天才能完成

  解:分析:乙的工效是甲工效的3÷2=1.5倍,设甲的工效为x,乙的工效为1.5x,

  (2+7)x+1.5x×7=,解之得:x=,乙工效1÷1.5x =26(天)

初中奥数练习题8

  1.已知x2+x= 1 3 ,求6x4+15x3+10x2的值

  2.已知a,b,c为实数,且满足下式:a2+b2+c2=1,①,a( 1 b + 1 c )+b( 1 c + 1 a )+c( 1 a + 1 b )=3;②求a+b+c的值.

  解:将①式变形如下,

  a( 1 b + 1 c )+1+b( 1 c + 1 a )+1+c( 1 a + 1 b )+1=0,

  即a( 1 a + 1 b + 1 c )+b( 1 a + 1 b + 1 c )+c( 1 a + 1 b + 1 c )=0,

  ∴(a+b+c)( 1 a + 1 b + 1 c )=0,

  ∴(a+b+c) bc+ac+ab abc =0,

  ∴a+b+c=0或bc+ac+ab=0.

  若bc+ac+ab=0,则

  (a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,

  ∴a+b+c=±1.

  ∴a+b+c的值为0,1,-1.

【初中奥数练习题】相关文章:

初中奥数练习题目07-30

奥数练习题07-23

初中奥数几何计数练习题08-01

初中奥数行程问题经典练习题整理08-01

奥数《数苹果》练习题及答案07-18

奥数练习题及解析07-12

小学奥数练习题精选08-06

小学奥数精选练习题08-06

奥数专用练习题07-13