初中奥数的知识点

时间:2024-06-26 13:23:00 晓丽 数学 我要投稿
  • 相关推荐

初中奥数的知识点

  漫长的学习生涯中,说起知识点,应该没有人不熟悉吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。掌握知识点有助于大家更好的学习。下面是小编精心整理的初中奥数的知识点,欢迎大家分享。

初中奥数的知识点

  初中奥数的知识点

  1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。

  2、常用的因式分解方法:

  (1)提取公因式法:

  (2)运用公式法:平方差公式: ;

  完全平方公式:

  (3)十字相乘法:

  (4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

  (5)运用求根公式法:

  若 的两个根是 、 ,则有:

  3、因式分解的一般步骤:

  (1)如果多项式的各项有公因式,那么先提公因式;

  (2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;

  (3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

  (4)最后考虑用分组分解法。

  初中奥数的知识点

  (1)公约数和最大公约数

  几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

  例如:4是12和16的最大公约数,可记做:(12 ,16)=4

  (2)公倍数和最小公倍数

  几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

  例如:36是12和18的最小公倍数,记作[12,18]=36。

  (3)最大公约数和最小公倍数的关系

  如果用a和b表示两个自然数

  1、那么这两个自然数的最大公约数与最小公倍数关系是:

  (a,b)×[a,b]=a×b。

  (多用于求最小公倍数)

  2、(a,b) ≤ a ,b ≤ [a,b]

  3、[a,b]是(a,b)的倍数,(a,b)是[a,b]的约数

  4、(a,b)是a+b 和a-b 的约数,也是(a,b)+[a,b]和(a,b)-[a,b]的约数

  (4)求最大公约数的方法很多,主要:短除法、分解质因数法、辗转相除法。

  例如:

  1、(短除法)用一个数去除30、60、75,都能整除,这个数最大是多少?

  解:∵

  (30,60,75)=5×3=15

  这个数最大是15。

  2、(分解质因数法)求1001和308的最大公约数是多少?

  解:1001=7×11×13(这个质分解常用到) , 308=7×11×4

  所以最大公约数是7×11=77

  在这种方法中,先将数进行质分解,而后取它们“所有共有的质因数之积”便是最大公约数。

  3、(辗转相除法)用辗转相除法求4811和1981的最大公约数。

  解:∵4811=2×1981+849,1981=2×849+283,849=3×283,∴(4811,1981)=283。

  补充说明:如果要求三个或更多的数的最大公约数,可以先求其中任意两个数的最大公约数,再求这个公约数与另外一个数的最大公约数,这样求下去,直至求得最后结果。

  (5)约数个数公式

  一个合数的约数个数,等于它的质因数分解式中每个质因数的个数(即指数)加1的连乘的积。

  例如:求240的约数的个数。

  解:∵240=24×31×51,∴240的约数的个数是

  (4+1)×(1+1)×(1+1)=20,∴240有20个约数。

  初中奥数的知识点

  一、代数式的定义

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。注意:

  (1)单个数字与字母也是代数式;

  (2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。

  二、整式

  单项式与多项式统称为整式。

  1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。

  2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

  三、升(降)幂排列

  把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

  初中奥数的知识点

  1、相反数

  实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

  2、绝对值

  一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

  3、倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

  初中奥数的知识点

  恒等概念是对两个代数式而言,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等

  表示两个代数式恒等的等式叫做恒等式

  如:a+b=b+a;2x+5x=7x都是恒等式,而t2+6=5t,x+7=4都不是恒等式,以前学过的运算律都是恒等式

  将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换)

  以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.

  如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法

  1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的

  如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个

  反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项)

  2.通过一系列的恒等变形,证明两个多项式是恒等的

  如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r

  例:求b、c的值,使下面的恒等成立

  x2+3x+2=(x-1)2+b(x-1)+c ①

  解一:∵①是恒等式,对x的任意数值,等式都成立

  设x=1,代入①,得

  12+3×1+2=(1-1)2+b(1-1)+c

  c=6

  再设x=2,代入①,由于已得c=6,故有

  22+3×2+2=(2-1)2+b(2-1)+6

  b=5

  ∴x2+3x+2=(x-1)2+5(x-1)+6

  解二:将右边展开

  x2+3x+2=(x-1)2+b(x-1)+c

  =x2-2x+1+bx-b+c

  =x2+(b-2)x+(1-b+c)

  比较两边同次项的系数,得

  由②得b=5

  将b=5代入③得

  1-5+c=2

  c=6

  ∴x2+3x+2=(x-1)2+5(x-1)+6

  这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值

  初中奥数的知识点

  1. 定义:如果一个整式除以另一个整式所得的商式也是一个整式,并且余式是零,则称这个整式被另一个整式整除。

  2. 根据被除式=除式×商式+余式,设f(x),p(x),q(x)都是含x 的整式,那么 式的整除的意义可以表示为:

  若f(x)=p(x)×q(x), 则称f(x)能被 p(x)和q(x)整除

  例如∵x2-3x-4=(x-4)(x +1),∴x2-3x-4能被(x-4)和(x +1)整除。

  显然当 x=4或x=-1时x2-3x-4=0

  3. 一般地,若整式f(x)含有x –a的因式,则f(a)=0

  反过来也成立,若f(a)=0,则x-a能整除f(x)。

  4. 在二次三项式中

  若x2+px+q=(x+a)(x+b)=x2+(a+b)x+ab 则p=a+b,q=ab

  在恒等式中,左右两边同类项的系数相等。这可以推广到任意多项式。

【初中奥数的知识点】相关文章:

初中奥数题07-17

小升初奥数:比例问题的知识点11-12

小升初奥数几何知识点汇总03-21

什么是奥数及奥数的意义01-22

小学奥数知识点之相遇问题04-14

什么是奥数07-05

初中还有学习奥数的必要吗08-02

关于时钟问题的小升初奥数知识点梳理总结06-08

孩子进入初中是否还要学奥数08-10

初中学习奥数有什么意义11-17