方阵问题三年级奥数题
在学习和工作的日常里,我们都不可避免地要接触到练习题,多做练习方可真正记牢知识点,明确知识点则做练习效果事半功倍,必须双管齐下。大家知道什么样的习题才是规范的吗?以下是小编收集整理的方阵问题三年级奥数题,欢迎阅读与收藏。
方阵问题三年级奥数题
例4.五年级学生分成两队参加学校广播操比赛,他们排成甲乙两个方阵,其中甲方阵每边的人数等于8,如果两队合并,可以另排成一个空心的丙方阵,丙方阵每边的人数比乙方阵每边的人数多4人,甲方阵的人数正好填满丙方阵的空心五年级参加广播操比赛的一共有多少人?
方阵问题三年级奥数题
分析:若只排列一个乙方阵,则多余的人数为(即甲方阵的人数)8×8=64(人),排列一个实心的丙方阵,不足的人数是:8×8=64(人)假设丙方阵为实心方阵,则乙多的人数是:8×8+8×8=128(人),又根据方阵扩展一层,每边增加2人,丙方阵比乙方阵的外边多4人,丙方阵多于乙方阵的层数是4÷2=2(层),方阵扩展2层,需要增加128人,则方阵最外层的人数是(128+2×4)÷2=68(人),丙方阵的总人数18×18-8×8=260(人)
解:(1)假设丙方阵为实心方阵,则方阵最外层的人数是:(8×8+8×8+2×4)÷2=68(人)
(2)丙方阵最外层每边的人数是:68÷4+1=18(人)
(3)空心丙方阵的总人数:18×18-8×8=324-64=260(人)
答:五年级参加广播操比赛的一共有260人。
方阵问题三年级奥数题
晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?
分析:方阵每向里面一层,每边的个数就减少2个,知道最外面一层每边放14个,就可以求第二层及第三层每边个数.知道各层每边的个数,就可以求出各层总数。
解:最外边一层棋子个数:(14-1)×4=52(个)
第二层棋子个数:(14-2-1)×4=44(个)
第三层棋子个数:(14-2×2-1)×4=36(个).
摆这个方阵共用棋子:
52+44+36=132(个)
还可以这样想:
中空方阵总个数=(每边个数一层数)×层数×4进行计算。
解:(14-3)×3×4=132(个)
答:摆这个方阵共需132个围棋子。
方阵问题三年级奥数题
1、某班抽出一些学生参加节日活动表演,想排成一个正方形方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人?
2、棋子若干粒,恰好可排成每边8粒的正方形,棋子的总数是多少?棋子最外层有多少粒?
3、有学生若干人,排成5层的中空方阵,最外层每边人数是12人,问有多少学生?
4、设计一个团体操表演队,想排成6层的中空方阵,已知参加表演的有360人,问最外层每边应安排多少人?
5、在第五届运动会上,红星小学组成了一个大型方块队,方块队最外层每边30人,共有10层,中间5层的位置由20个同学抬着这次运动会的会徽,问这个方块队共有多少同学组成?
6、有一队学生,排成中空方阵,最外层的人数共56人,最内层的人数共32人,这一队学生共有多少人?
7、团体操表演,少先队员排成4层的中空方阵,最外层每边人数是10人,问参加团体操表演的少先队员共有多少人?
8、用棋子摆成方阵,恰好每边24粒的实心方阵,若改为3层的空心方阵,它的最外层每边应改放多少粒?
9、将棋子排成正方形,甲、乙两人自其外周起,轮流取一周,结果甲比乙多得24粒,问棋子总数有多少粒?
【方阵问题三年级奥数题】相关文章:
有关方阵问题的奥数专题01-26
三年级围棋方阵问题奥数题及参考答07-06
三年级方阵问题奥数题及参考答案07-06
奥数题盈亏问题07-06
奥数题行程问题07-07
奥数题:灌水问题07-07
奥数方阵问题同步练习题07-05
奥数关于方阵问题的练习题01-26
数的整除问题奥数题及答案07-07