四年级奥数题型精选
四年级奥数题型精选1
1.在下列数列的()中填上适当的数。
(1)1,3,7,13,21,( ),43 ,( ),……
(2)1,4,9,( ),25,36,( ),……
(3)1,1,2,3,5,8,( ),21,( ),……
(4)7,2,7,4,7,6,7,( ),7,10,( ),……
2.小红用平底锅烙饼,每次只能放2张饼。烙一张饼需要2分钟(正、反面各需1分钟)。为了节约时间,小红要烙7张饼最少需要( )分钟。
3.麦克、尼克、杰克3名同学同时到图书馆借书,麦克借漫画书需要5分钟,尼克借故事书需要6分钟,杰克借科技书需要3分钟,图书馆只有一位钟老师。请你帮助钟老师安排( 、 、 )借书的先后次序,才能使三位同学留在图书馆的时间总和最短,最短需要( )分钟。
4.有四个同学在假期里约定每两人互通一封信,他们总共写了( )封信。
5.□-○=9 □+□+○+○=22 □=( ) ○=( )
四年级奥数题型精选2
数字指的是0、1、2、3、4、5、6、7、8、9这十个.数字问题不但有趣,而且还会使我们的思维活跃,思路开阔.
在解答数字问题时,主要用到下面一些知识:
①奇偶数的性质:奇数±奇数=偶数
偶数±偶数=偶数
奇数±偶数=奇数
②自然数被9、11整除的特征:
一个自然数若它的各个数位上的数字和能被9整除,那么这个自然数必能被9整除.反之也成立.
(更一般地,一个自然数除以9的余数与它的各个数位上的数字和除以9的余数相同.)
一个自然数若它的奇数位上的数字和与偶数位上的数字和的差能被11整除,那么这个自然数必能被11整除.反之也成立.
③自然数分类的思想:分类时注意不重不漏,即某个自然数必属于某一类而且只能属于一类.
此外,还要用到加、减法中数位上的进位、借位,乘法中积的奇偶性与各个乘数的'奇偶性的关系,…等等一些知识.
四年级奥数题型精选3
例1有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚。问:原来至少有多少枚棋子?
分析与解:棋子最少的情况是最后一次四等分时每份为1枚。由此逆推,得到
第三次分之前有1×4+1=5(枚),
第二次分之前有5×1+1=21(枚),
第一次分之前有21×4+1=85(枚)。
所以原来至少有85枚棋子。
例2袋里有若干个球,小明每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球。问:袋中原有多少个球?
分析与解:利用逆推法从第5次操作后向前逆推。第5次操作后有3个,第4次操作后有(3-1)×2=4(个),第3次……为了简洁清楚,可以列表逆推如下:
所以原来袋中有34个球。
例3三堆苹果共48个。先从第一堆中拿出与第二堆个数相等的苹果并入第二堆;再从第二堆中拿出与第三堆个数相等的苹果并入第三堆;最后又从第三堆中拿出与这时第一堆个数相等的苹果并入第一堆。这时,三堆苹果数恰好相等。问:三堆苹果原来各有多少个?
分析与解:由题意知,最后每堆苹果都是48÷3=16(个),由此向前逆推如下表:
原来第一、二、三堆依次有22,14,12个苹果。
逆推时注意,每次变化中,有一堆未动;有一堆增加了一倍,逆推时应除以2;另一堆减少了增加一倍那堆增加的数,逆推时应使用加法。
四年级奥数题型精选4
(1)12+4×9=
(2)0÷4+81=
(3)150÷5=
(4)24+5×9=
(5)25×4÷5=
(6)(400+40)÷4=
(7)200-50×3=
(8)15×6÷9=
(9)(75-40)÷5=
(10)9×8-18=
(11)40×0+40=
(12)59÷7=
(13)1220÷9=
(14)6000÷3=
(15)(720-360)÷2=
(16)(254-54)×4=
(17)(3700-3000)÷5=
(18)50+50-50=
(19)(900+100)÷8=
(20)28÷4÷7=
2.填空。
(1)0比( )少5892。
(2)( )吨=5000千克
6千米=( )米
( )千米=20xx米
10千克=( )克
200厘米=( )米
7吨=( )千克
4米=( )分米
3000千克=( )吨
(3)商和除数都是6,余数是3,被除数是( )。
(4)5409÷3的商是( )位数,最高位是( )位。
(5)0和任何数相乘都得( );任何数乘以( )还得任何数。
(6)一块正方形菜地,周长是12米,边长是( )米。
四年级奥数题型精选5
9. 除以3余1,除以5余2,除以7余4的最小三位数是_____.
10. 有一筐鸡蛋,当两个两个取、三个三个取、四个四个取、五个五个取时,筐内最后都是剩一个鸡蛋;当七个七个取出时,筐里最后一个也不剩.已知筐里的鸡蛋不足400个,那么筐内原来共有_____个鸡蛋.
答案:
9. 172
因为除以3余1,除以5余2的最小数是22,而3和5的最小公倍数是15,所以符合条件的数可以是22,37,52,67,…….又因为67 7=9…4,所以67是符合题中三个条件的最小数,而3,5和7的最小公倍数是105,这样符合条件的数有67,172,277,….
所以,符合条件的最小三位数是172.
10. 301
先求出2,3,4,5的最小公倍数是60,然后用试验法求出60的倍数加1能被7整除的数
60+1=61
60 2+1=121
60 3+1=181
60 4+1=241
60 5+1=301
其中301能被7整除.所以筐内原来有301个鸡蛋.
四年级奥数题型精选6
一次,小王去超市用36元买了若干盒某品牌的牛奶。过了一段时间他又去超市,发现同种品牌的牛奶每盒让利0.3元销售,于是他又花36元,结果比上次多买了4盒。小王第一次购买这种品牌的牛奶多少盒?
解答:36/4=9,即现在9元购买的牛奶比原来9元购买的牛奶正好多1盒,
要购买多出来的这1盒牛奶,要从原来每盒牛奶的价钱当中拿出0.3元,所以现在每盒牛奶的价格是0.3元的整数倍。原来每盒牛奶的价格是现在每盒牛奶的价格再加上0.3元,也是0.3的整数倍,原来每盒牛奶价格中0.3元的个数比现在的多1,现在能购买牛奶的盒数比原来多1,9/0.3=30,原来每盒价格中0.3元的个数乘盒数等于30,现在每盒价格中0.3元的个数乘盒数也等于30,这里所说的个数和盒数都是正整数,只有5×6和6×5满足,所以原来用9元能买5盒,每盒的价格是6个0.3元,为1.8元,现在用9元能买6盒,每盒的价格是5个0.3元,为1.5元。
四年级奥数题型精选7
数学学习有助于脑力的开发,多做奥数题有助于我们数学思维的提升,为大家整理了四年级奥数整数拆数题型举例,供大家学习参考。
电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?
解答:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。
我们知道,1+2+3+4+5+6+7=28。如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。
所以最多可以播7天。
说明:本题实际上是问,把正整数30分拆成互不相等的正整数之和时,最多能写成几项之和?也可以问,把一个正整数拆成若干个整数之和时,有多少种分拆的办法?
例如:
5=1+1+1+1+1=1+1+1+2,
=1+2+2
=1+1+3
=2+3
=1+4,共有6种分拆法(不计分成的整数相加的顺序)。
以上就是四年级奥数整数拆数题型举例的全部内容,希望对大家的学习有所帮助
【四年级奥数题型】相关文章:
小升初奥数题型汇总07-16
奥数题型新定义07-27
关于邮票的奥数经典题型07-25
小学奥数经典题型口诀07-12
四年级奥数题型08-01
小学奥数最小整数的经典题型07-30
小升初奥数常见题型汇总07-15
重庆小升初奥数重要题型07-14
小升初奥数题型:植树问题07-17