- 相关推荐
五年级奥数难题
在日常学习、工作和生活中,大家对奥数都再熟悉不过了吧,下面是小编为大家整理的五年级奥数难题,希望对大家有所帮助。
五年级奥数难题 1
由于飞镖游戏日渐流行,一个飞镖团体决定把称作“501分”的比赛稍作修改,使得它更具有挑战性。新的规定是每一回合的总分必须是质数才能列入记录。
每一回合,每一位参加比赛的人掷3支飞镖,每支飞镖可能得到的分数是1、2、3、…20,或是这些分数的2倍或3倍。如果飞镖射中“内圈”,可以得到25分,如果射中靶心,则得50分。如果飞镖没有射到靶盘,就算得0分。
例如某一回合的比赛,3支飞镖射中3倍20、2倍12和5分,那么总分就是89,是个质数,因此可以列入记录。如果每支飞镖都射中3倍30,虽然总分高达180,但因不是质数,所以不算。
3种可被列入记录的最高总分各是多少?
要想达到501分,最少要经过几个回合?
如果比赛必须掷出“2倍”分数后才能结束,那么参加比赛的人最少需投掷几支飞镖才可以获胜?
这个游戏的另一种玩法,就是从501分开始倒推,与每一回合总分的差是质数时才列入记录(此时每一回合的'总分不必是质数)。
请证明,在第九支飞镖射中一个2倍分数后,就可使差为0。
分析与解答:
3种最高的分数是:
167=3倍20+3倍19+靶心
157=靶心+靶心+3倍19
151=3倍19+3倍18+2倍20
因为501=3×167,因此最少只需3个回合就可以得到501分,当然玩的人必须是位高手。
如果飞镖射中2倍分数区后才能结束比赛,那么这一回合就不可能得到167分,因此就需要进行第五回合。如果第四回合的分数是质数,那么它一定是奇数,这样 第五回合的得分也必须是奇数;又由于在第五回合必须得一个2倍分数才能结束,因此第五回合至少要掷2支飞镖。以14支飞镖得到501分的方法之一如下:
第一回合:3倍20+3倍19+靶心 167
第二回合:3倍20+3倍19+靶心 167
第三回合:3倍20+3倍20+7 127
第四回合:20+15+2 37
用9支飞镖使分数差为0,且每一回合总分的差均为质数
五年级奥数难题 2
难题:三个人
甲、乙、丙三人中有一人是牧师,一人是骗子,一人是赌棍。牧师只说真话,骗子只说假话,赌棍有时说真话有时说假话。甲说:“丙是牧师.”乙说:“甲是赌棍。”丙说:“乙是骗子。”那么请问甲、乙、丙三人各是什么职业?
答案与解析:
甲是赌棍,乙是牧师,丙是骗子
牧师说真话,不可能说别人是牧师,因此甲一定不是牧师。若乙是牧师,则甲一定是赌棍,那么丙就是骗子,符合题意。若丙是牧师,则乙就是赌棍,甲是骗子,此时甲不可能说出“丙是牧师”这句真话,因此矛盾。
提示:这是一道逻辑推理的试题,重点中学的考试中很愿意考这样的`题型,解答这类问题时首先要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的情况,逐步归纳,找到正确的答案。
五年级奥数难题 3
难题:三个人
甲、乙、丙三人中有一人是牧师,一人是骗子,一人是赌棍。牧师只说真话,骗子只说假话,赌棍有时说真话有时说假话。甲说:“丙是牧师。”乙说:“甲是赌棍。”丙说:“乙是骗子。”那么请问甲、乙、丙三人各是什么职业?
答案与解析:
甲是赌棍,乙是牧师,丙是骗子
牧师说真话,不可能说别人是牧师,因此甲一定不是牧师。若乙是牧师,则甲一定是赌棍,那么丙就是骗子,符合题意。若丙是牧师,则乙就是赌棍,甲是骗子,此时甲不可能说出“丙是牧师”这句真话,因此矛盾。
提示:这是一道逻辑推理的试题,重点中学的考试中很愿意考这样的题型,解答这类问题时首先要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的.情况,逐步归纳,找到正确的答案。
五年级奥数难题 4
1、甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2、有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3、某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4、一个圆柱形容器内放有一个长方形铁块。现打开水龙头往容器中灌水。3分钟时水面恰好没过长方体的顶面。再过18分钟水已灌满容器。已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5、甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6、有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池。这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7、小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。小明从家到学校全部步行需要多少时间?
8、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。最后乙车比甲车迟4分钟到C地。那么乙车出发后几分钟时,甲车就超过乙车。
9、甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10、今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个。那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
11、甲、乙、丙三人,他们的步行速度分别为每分钟480、540、720米,甲、乙、丙3人同时动身,甲、乙二人从A地出发,向B地行时,丙从B地出发向A地行进,丙首先在途中与乙相遇,3分钟后又与甲相遇,求甲、乙、丙3人行完全程各用多长时间?
12、甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?
13、甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。求这辆卡车的速度。
14、甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的'速度分别为60千米/时和48千米/时。有一辆迎面开来的卡车分别在他们出发后5时、6时、8时先后与甲、乙、丙三辆车相遇。求丙车的速度。
15、李华步行以每小时4千米的速度从学校出发到20.4千米处的冬令营报到。半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果三人同时在途中某地相遇。问骑车人每小时行驶多少千米?
16、一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人。如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分钟发一辆公共汽车?
17、在地铁车站中,从站台到地面有一架向上的自动扶梯。小强想逆行从上到下,如果每秒向下迈两级台阶,那么他走过100级台阶后到达站台;如果每秒向下迈三级台阶,那么走过75级台阶到达站台。自动扶梯有多少级台阶?
18、甲步行上楼梯的速度是乙的2倍,一层到二层有一上行滚梯(自动扶梯)正在运行。二人从滚梯步行上楼,结果甲步行了10级到达楼上,乙步行了6级到达楼上。这个滚梯共有多少级?
19、从电车总站每隔一定时间开出一辆电车。甲与乙两人在一条街上沿着同一方向步行。甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。那么电车总站每隔多少分钟开出一辆电车?
20、有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车时车速为每小时50公里。问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几?(学生上下车时间不计)
21、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
22、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
23、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
24、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
25、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
26、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
27、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
28、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
【五年级奥数难题】相关文章:
经典的奥数难题(精选196例)04-08
什么是奥数及奥数的意义01-22
什么是奥数07-05
奥数练习结果03-12
小学经典奥数题目06-16
精选奥数算式专题07-19
奥数解题思路09-27
初中奥数题07-17
小学精选奥数题06-01
如何学习奥数06-20