数学 百文网手机站

奥数牛吃草习题及答案

时间:2021-07-06 14:15:07 数学 我要投稿

奥数牛吃草习题及答案

  有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

  参考答案:

  【解析】这是一道牛吃草问题,是比较复杂的牛吃草问题。

  把每头牛每天吃的草看作1份。

  因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份

  所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份

  因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

  所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份

  所以45-30=15天,每亩面积长84-60=24份

  所以,每亩面积每天长24÷15=1.6份

  所以,每亩原有草量60-30×1.6=12份

  第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份

  新生长的每天就要用38.4头牛去吃,其余的'牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛

  所以,一共需要38.4+3.6=42头牛来吃。

  两种解法:

  解法一:

  设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)。

  解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头。

【奥数牛吃草习题及答案】相关文章:

牛吃草问题的奥数题及答案01-20

奥数专题之牛吃草问题习题07-13

奥数的牛吃草题目08-06

“牛吃草”奥数问题07-20

小学牛吃草奥数问题07-21

关于牛吃草奥数题目07-13

小学奥数牛吃草问题01-27

吃草问题奥数练习题含答案07-13

长沙小升初奥数牛吃草问题07-17