关于五年级奥数游戏序列推算题
在50年代早期,史威兹(Bryan Thwaites)担任教师时,要学生计算一组序列,其规则为:当某数是偶数时,将该数除以2;若是奇数,则先乘3再加1。
举个例子,如果给定的起始数字是7,则其后的几个数推导如下:
7奇数→7×3+1=22
22偶数→22÷2=11
11奇数→11×3+1=34
34偶数→34÷2=17
17奇数→17×3+1=52
52偶数→52÷2=26
26偶数→26÷2=13依此类推。
显然如遇到奇数,下一个数字将会是一个较大的数,且为偶数,所以在再下一步上必定会被减半。
根据当时学生们的探讨及史威兹本人的研究,他相信该序列最后必定会出现1这个数字,然后又按照4→2→1→4→2→1→4→2→1……的顺序一直重复,故可将1视为该序列的.终点。全世界有很多的数学家试图证明这项猜测,或者找出不同的终点,但至今尚无人成功。
现在请先将上面的序列完成,使该序列到达终点1,然后再自定一个不同的起始数字重复此项步骤。
解答与分析
对于一任意给定的起始数字,目前已证明无法直接求得该序列的长度,例如起始数字为 27时,需要 111个步骤才会到 1,又有谁能猜得到呢?
然而,像2n收敛到1需要n个步骤,这是显而易见的,因为32→16→8→4→2→1。
本题的整个计算过程可以应用电脑来处理,并且可和其他类似的程序做个比较。例如当N为奇数时,取其下一个数字为3N+ 5或 5N- 13等。
【五年级奥数游戏序列推算题】相关文章:
五年级奥数游戏序列推算题07-21
奥数巧算题及答案07-25
奥数运算题练习07-21
奥数速算题目推荐07-13
奥数复杂计算题07-23
小学奥数整数计算题07-31
2017解析奥数计算题08-06
小学奥数计算题集锦07-21
小学奥数计算题讲解07-23