小升初奥数百鸡问题解题指导及例题解析参考

时间:2023-07-28 09:55:28 兴亮 数学 我要投稿
  • 相关推荐

小升初奥数百鸡问题解题指导及例题解析参考

  在生活、工作和学习中,大家都跟奥数题打过交道吧,以下是小编精心整理的小升初奥数百鸡问题解题指导及例题解析参考,欢迎阅读,希望大家能够喜欢。

  小升初奥数百鸡问题解题指导及例题解析参考 1

  《张丘建算经》中有这样一题:公鸡每只值5文钱,母鸡每只值3文钱,小鸡每3只值1文钱。现在用100文钱买100只鸡,公鸡、母鸡、小鸡各有多少只?

  这是中国古代算术中的一类典型问题百鸡问题,现代数学用不定方程求解,在小学阶段,不少同学都是用拼凑的办法来解决。这里介绍一种新方法,对小学生很适用。

  1、求倍数。每只公鸡值5文钱,每只母鸡值3文钱,每只小鸡值1/3文钱。以最便宜的小鸡为标准,公鸡和母鸡的价格分别是小鸡的51/3=15倍和31/3=9倍。

  2、算超额。假设100文钱全部买小鸡,可买1001/3=300只,超出实有三种鸡总数300-100=200只。

  3、组等式。由于公鸡置换成小鸡可多出自身只数的15-1=14倍,母鸡置换成小鸡可多出自身只数的9-1=8倍。不难理解,上述假设中多出的200只即为公鸡和母鸡置换成小鸡后一共增加的只数,关系式为:公鸡只数14+母鸡只数8=200.

  4、试结果。一般来说,不定方程的正整数解按关系式就可以观察得到。我们也可以先把等式变形,观察起来更为容易。方法是,在等式两边同时除以一个相同的数(0除外),得到等式右边为整数,左边只有一项系数是分数的形式。

  在上式两边同时除以8,得到:公鸡只数7/4+母鸡只数=25.显然,公鸡只数必须是4的倍数。这样,从4起,依次用4的倍数去试算,可以得出三种情况:公鸡4只,母鸡18只,小鸡78只;或公鸡8只,母鸡11只,小鸡81只;或公鸡12只,母鸡4只,小鸡84只。

  下面再举一例来验证。

  大数学家欧拉曾提出过这样的问题:一头猪321(312)银币,一只山羊131(113)银币,一只绵羊21(1/2)银币。有人用100个银币,买了100头牲畜。问:猪、山羊、绵羊各多少?

  猪的单价是绵羊的3121/2=7倍,山羊的单价是绵羊的1131/2=223倍,猪和山羊分别置换成绵羊,可多出自身只数的7-1=6倍和 223-1=123倍。如果100个银币都买绵羊,可买1001/2=200只,超出实有牲畜头数200-100=100头,这100头就是猪和山羊换成绵羊后多出的头数,列式:猪6+山羊123=100.显然,山羊的只数应是3的倍数,可以推算得到:猪15头,山羊6只,绵羊79只;或猪10 头,山羊24只,绵羊66只;或猪5头,山羊42只,绵羊53只。

  上述解法,我们可以用代数知识来帮助分析。

  在第一题里,设公鸡、母鸡、小鸡分别有X、Y、Z只,列出两个方程(方程组)X+Y+Z=100①5X+3Y+13Z=100②,将方程②乘以3,就是15X+9Y+Z=300,与方程①相减(消去Z),得出14X+8Y=200,两边同时除以8,就是74X+Y=25.显然X只能是4的倍数,依次试算,就能得到与前面相同的答案来。

  这样一来,我们就会明白,所谓的新法,其实也并不新鲜,不过就是先用消元法把三元不定方程组演变成一个二元不定方程,然后有意识地将这个方程的某一个求知数的系数变成分数形式,便于观察这个未知数的值,其它未知数就不难推算了。

  小升初奥数百鸡问题解题指导及例题解析参考 2

  1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

  2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

  3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

  4.小明和张强付同样多的钱买了同一种铅笔,小明要了13支,张强要了7支,小明又给张强0.6元钱。每支铅笔多少钱?

  5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)

  6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

  7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

  8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

  9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

  10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

  解析参考

  1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

  解:一把椅子的价钱:

  288÷(10-1)=32(元)

  一张桌子的价钱:

  32x10=320(元)

  答:一张桌子320元,一把椅子32元。

  2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

  解:45+5x3

  =45+15

  =60(千克)

  答:3箱梨重60千克。

  3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4x2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

  解:4x2÷4

  =8÷4

  =2(千米)

  答:甲每小时比乙快2千米。

  4、想:根据两人付同样多的钱买同一种铅笔和小明要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而小明要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

  解:0.6÷[13-(13+7)÷2]

  =0.6÷[13-20÷2]

  =0.6÷3

  =0.2(元)

  答:每支铅笔0.2元。

  5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

  解:下午2点是14时。

  往返用的时间:14-8=6(时)

  两地间路程:(40+45)x6÷2

  =85x6÷2

  =255(千米)

  答:两地相距255千米。

  6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。

  解:第一组追赶第二组的路程:

  3.5-(4.5- 3.5)=3.5-1=2.5(千米)

  第一组追赶第二组所用时间:

  2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

  答:第一组2.5小时能追上第二小组。

  7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

  解:乙仓存粮:

  (32.5x2+5)÷(4+1)

  =(65+5)÷5

  =70÷5

  =14(吨)

  甲仓存粮:

  14x4-5

  =56-5

  =51(吨)

  答:甲仓存粮51吨,乙仓存粮14吨。

  8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

  解:乙每天修的米数:

  (400-10x4)÷(4+5)

  =(400-40)÷9

  =360÷9

  =40(米)

  甲乙两队每天共修的米数:

  40x2+10=80+10=90(米)

  答:两队每天修90米。

  9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30x6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

  解:每把椅子的价钱:

  (455-30x6)÷(6+5)

  =(455- 180)÷11

  =275÷11

  =25(元)

  每张桌子的价钱:

  25+30=55(元)

  答:每张桌子55元,每把椅子25元。

  10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

  解:(7+65)x[40÷(75- 65)]

  =140x[40÷10]

  =140x4

  =560(千米)

  答:甲乙两地相距 560千米。

【小升初奥数百鸡问题解题指导及例题解析参考】相关文章:

小升初奥数浓度问题经典例题解析07-04

关于奥数行程问题中经典问题例题及解析07-20

小升初奥数行程问题-环形跑道经典例题11-21

奥数火车过桥行程问题例题解析答案02-18

小学奥数工程问题例题10-14

小学奥数追及问题的公式及例题解答12-02

小升初奥数行程相遇问题11-02

奥数题:行程问题解题技巧02-18

关于小升初数学行程问题解题方法10-20

小学奥数有关多次相遇问题解题方法03-03