小学数论奥数题库
一个七位数,能同时被1,2,3,4,5,6,7,8,9整除,则
数论答案:
能被8整除的数肯定能被2与4整除,能被9整除的数肯定能被3整除,能同时被8与9整除的数肯定能被6整除,而能被5整除的数末位数肯定是0或5,因为它要能被8(偶数)整除,所以末位数肯定是0。也即z=0 。所以题目就转变为: 能同时被7,8,9整除,求x+y 的.值。因为7,8,9两两互质,所以能被7,8,9整除肯定能被 整除,一个7位数被504整除,且最后一位数是0,所以可知商的末位数肯定是5。而因为这个七位数开始的四个数是2058,所以可知商的首位是4由此可以很容易推出商是4085。所以X=8,Y=4,Z=0,即X+Y+Z=12。
【小学数论奥数题库】相关文章:
奥数数论数的整除07-16
工程数论的奥数习题07-31
数论奥数专项分析08-01
数的整除小学奥数数论题07-20
奥数题及答案:数论问题07-19
奥数题数论:运原料07-30
关于数论整除的奥数题及答案07-25
数论问题奥数题及答案:数的整除性07-31
奥数练习题:完全平方数的数论08-06