奥数难题汇编精选
编者小语:
奥数让学生不拘泥于书本,不依常规,积极提出自己的新见解、新发现,有自己的新思路、新设计,在思考和解决问题时,思路更畅通、方法更灵活、很有深度。数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数难题汇编精选:特殊数题1,可以帮助到你们,助您快速通往高分之路!!
(1)21-12
当被减数和减数个位和十位上的数字(零除外)交叉相等时,其差为被减数与减数十位数字的差乘以9。
因为这样的两位数减法,最低起点是21-12,差为9,即(2-1)×9。减数增加1,其差也就相应地增加了一个9,故31-13=(3-1)×9=18。减数从12—89,都可类推。
被减数和减数同时扩大(或缩小)十倍、百倍、千倍……,常数9也相应地扩大(或缩小)相同的倍数,其差不变。如
210-120=(2-1)×90=90,
0.65-0.56=(6-5)×0.09=0.09。
(2)31×51
个位数字都是1,十位数字的和小于10的两位数相乘,其积的前两位是十位数字的'积,后两位是十位数字的和同1连在一起的数。
个位数字相同,十位数字和是10的两位数相乘,十位数字的积与个位数字的和为积的前两位数,后两位是个位数的积。若个位数的积是一位数,前面补0。
证明:(10a+c)(10b+c)
=100ab+10c(a+b)+cc
=100(ab+c)+cc (a+b=10)。
(4)17×19
十几乘以十几,任意一乘数与另一乘数的个位数之和乘以10,加个位数的积。
原式=(17+9)×10+7×9=323
证明:(10+a)(10+b)
=100+10a+10b+ab
=[(10+a)+b]×10+ab。
(5)63×69
十位数字相同,个位数字不同的两位数相乘,用一个乘数与另个乘数的个位数之和乘以十位数字,再乘以10,加个位数的积。
原式=(63+9)×6×10+3×9
=72×60+27=4347。
证明:(10a+c)(10a+d)
=100aa+10ac+10ad+cd
=10a[(10a+c)+d]+cd。
(6)83×87
十位数字相同,个位数字的和为10,用十位数字加1的和乘以十位数字的积为前两位数,后两位是个位数的积。如
(7)38×22
十位数字的差是1,个位数字的和是10且乘数的个位数字与十位数字相同的两位数相乘,积为被乘数的十位数与个位数的平方差。
原式=(30+8)×(30-8)
=302-82=836。
(8)88×37
被乘数首尾相同,乘数首尾的和是10的两位数相乘,乘数十位数字与1的和乘以被乘数的相同数字,是积的前两位数,后两位是个位数的积。
(10)125×101
三位数乘以101,积为被乘数与它的百位数字的和,接写它的后两位数。125+1=126。
原式=12625。
再如348×101,因为348+3=351,
原式=35148。
(11)84×49
一个数乘以49,把这个数乘以100,除以2,再减去这个数。
原式=8400÷2-84
=4200-84=4116。
【奥数难题】相关文章:
经典的奥数难题07-13
有关解决奥数难题07-17
关于奥数难题的解题指导07-18
奥数难题解答方法08-02
画图法来解决奥数难题08-02
小学奥数行程难题解析07-24
解答奥数难题的常见方法07-18
学奥数的三大难题07-15
如何闯过奥数难题这道难关?07-14