数学 百文网手机站

四年级奥数:行程问题

时间:2021-07-06 08:30:12 数学 我要投稿

四年级奥数:行程问题

四年级奥数:行程问题1

  45名学生要到离学校30千米的郊外劳动。学校只有一辆汽车能乘坐15人,汽车的速度是每小时60千米。学生步行的速度是每小时4千米。为使他们尽早到达劳动地点,他们最少要用几小时才能全部到达?

  [解答]:

  45人分三组出发,每组15人。

  为了尽快到达,三组必须同时到达。

  每一组都是步行了一些路程,坐车行了一些路程。

  由于同时到达,所以每一组坐车的时间相等,当然步行的时间也相等。

  汽车速度是步行速度的15倍,所以如果时间相同,汽车行的路程是人步行路程的15倍。

  我们设第二组第一条红色线段的长度为1份。

  可得出第一条蓝色线段=8份,当然,第3条,第5条蓝色线段的长度也等于8份。

  还可以得到第三组的红色线段=2份,当然,第1组的红色线段也等于2份。

  所以全程是8+2=10份,8份路程坐车,2份路程步行。

  每份长度为30÷10=3公里。

  所以坐车时间为3×8÷60=0.4小时

  步行时间为3×2÷4=1.5小时

  一共需要0.4+1.5=1.9小时。

四年级奥数:行程问题2

  专题简析:

  在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度。船在水中漂流,不借助其他外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速。

  行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:

  顺水速度=船速+水速

  逆水速度=船速-水速

  (顺水速度+逆水速度)÷2=船速

  (顺水速度-逆水速度)÷2=水速

  例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。东西两地相距多少千米?

  分析与解答:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。由于货车比客车速度快,当货车过中点 18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。因为货车每小时比客车多行48-42=6千米,这样货车多行36千米需要 36÷6=6小时,即两车相遇的时间。所以,两地相距90×6=540千米。

  练 习 一

  1,甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。两人相遇时距全程中点3千米,求全程长多少千米。

  2,甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。东西两城相距多少千米?

  3,快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时慢车还相距7千米。慢车每小时行多少千米?

  例2:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。A、B两地间的路长多少米?

  分析与解答:从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲丙两人共行(30+50)×10=800米。这800米就是乙、丙相遇比甲多行的路程。乙每分钟比甲多行40-30=10米,现在乙比甲多行800米,也就是行了80÷10=80分钟。因此,AB两地间的路程为(50+40)×80=7200米。

  练 习 二

  1,甲每分钟走75米,乙每分钟走80米,丙每分钟走100米,甲、乙从东镇,丙人西镇,同时相向出发,丙遇到乙后3分钟再遇到甲。求两镇之间相距多少米?

  2,有三辆客车,甲、乙两车从东站,丙车从西站同时相向而行,甲车每分钟行1000米,乙车每分钟行800米,丙车每分钟行700米。丙车遇到甲车后20分钟又遇到乙车。求东西两站的距离。

  3,甲、乙、丙三人,甲每分钟走60米,乙每分钟走67米,丙每分钟走73米。甲、乙从南镇,丙从北镇同时相向而行,丙遇乙后10分钟遇到甲。求两镇相距多少千米。

  例3:甲、乙两港间的水路长286千米,一只船从甲港开往乙港顺水11小时到达;从乙港返回甲港,逆水13小时到达。求船在静水中的速度(即船速)和水流速度(即水速)。

  分析与解答:要求船速和水速,要先求出顺水速度和逆水速度,而顺水速度可按行程问题的一般数量关系求,即:路程÷顺水时间=顺水速度,路程÷逆水时间=逆水速度。因此,顺水速度是286÷11=26千米,逆水速度是286÷13=22千米。所以,船在静水中每小时行(26+22)÷2=24千米,水流速度是每小时(26-22)÷2=2千米。

  练 习 三

  1,A、B两港间的水路长208千米。一只船从A港开往B港,顺水8小时到达;从B港返回A港,逆水13小时到达。求船在静水中的速度和水流速度。

  2,甲、乙两港间水路长432千米,一只船从上游甲港航行到下游乙港需要18小时,从乙港返回甲港,需要24小时到达。求船在静水中的速度和水流速度。

  3,甲、乙两城相距6000千米,一架飞机从甲城飞往乙城,顺风4小时到达;从乙城返回甲城,逆风5小时到达。求这架飞机的速度和风速。

  例4:一只轮船从上海港开往武汉港,顺流而下每小时行25千米,返回时逆流而上用了75小时。已知这段航道的水流是每小时5千米,求上海港与武汉港相距多少千米?

  分析与解答:先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水速,可求出逆水速度为每小时行20-5=15千米。又已知“逆流而上用了75小时”,所以,上海港与武汉港相距15×75=1125千米。

  练 习 四

  1,一只轮船从A港开往B港,顺流而下每小时行20千米,返回时逆流而上用了60小时。已知这段航道的水流是每小时4千米,求A港到B港相距多少千米?

  2,一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时。已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?

  3,某轮船在相距216千米的两个港口间往返运送货物,已知轮船在静水中每小时行21千米,两个港口间的水流速度是每小时3千米,那么,这只轮船往返一次需要多少时间?

  例5:A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?

  分析与解答:虽然甲、乙两船的船速不同,但都在同一条水路上行驶,所以水速相同。根据题意,甲船顺水每小时行80÷4=20千米,逆水每小时行 80÷10=8千米,因此,水速为每小时(20-8)÷2=6千米。又由“乙船顺流而行80千米需要5小时”,可求乙船在顺水中每小时行80÷5=16千米。所以,乙船在静水中每小时行16-6=10千米。

  练 习 五

  1,甲乙两个码头间的水路长288千米,货船顺流而下需要8小时,逆流而上需要16小时。如果客船顺流而下需要12小时,那么客船在静水中的速度是多少?

  2,A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。如果乙船逆流而上需要20小时,那么乙船在静水中的速度是多少?

  3,一条长160千米的水路,甲船顺流而下需要8小时,逆流而上需要20小时。如果乙船顺流而下要10小时,那么乙船逆流而上需要多少小时?

四年级奥数:行程问题3

  一、填空题

  1.船行于120千米一段长的'江河中,逆流而上用10小明,顺流而下用6小时,水速_______,船速________.

  2.一只船逆流而上,水速2千米,船速32千米,4小时行________千米.(船速,水速按每小时算)

  3.一只船静水中每小时行8千米,逆流行2小时行12千米,水速________.

  4.某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则甲、乙两地相距_______千米.

  5.两个码头相距192千米,一艘汽艇顺水行完全程要8小时,已知水流速度是每小时4千米,逆水行完全程要用________小时.

  6.两个码头相距432千米,轮船顺水行这段路程要16小时,逆水每小时比顺水少行9千米,逆水比顺水多用________小时.

  7.A河是B河的支流,A河水的水速为每小时3千米,B河水的水流速度是2千米.一船沿A河顺水航行7小时,行了133千米到达B河,在B河还要逆水航行84千米,这船还要行_______小时.

  8.甲乙两船分别从A港逆水而上,静水中甲船每小时行15千米,乙船每小时行12千米,水速为每小时3千米,乙船出发2小时后,甲船才开始出发,当甲船追上乙船时,已离开A港______千米.

  9.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时.如果乙船顺流而下需5小时,问乙船逆流而上需要_______小时.

  10.已知从河中A地到海口60千米,如船顺流而下,4小时可到海口.已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行______小时.

  二、解答题

  11.甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?

  12.静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?

  13.一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是2千米,求这轮船在静水中的速度.

  14.甲、乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花5小时,另一机帆船每小时行12千米,这只机帆船往返两港需要多少小时?

四年级奥数:行程问题4

  专题简析:

  我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来学习一些常用的、基本的行程问题。

  解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

  例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。两人几小时后相遇?

  分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10千米。因此,两人20÷(6+4)=2 小时后相遇。

  练 习 一

  1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两地间的水路长多少千米?

  2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距多少千米?

  3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。两车出发后多少小时相遇?

  例2:王欣和陆亮两人同时从相距20xx米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。如果一只狗与王欣同时同向而行,每分钟行500 米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?

  分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即20xx÷(110+90)=10分钟。所以狗共行了 500×10=5000米。

  练 习 二

  1,甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?

  2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?

  3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?

  例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?

  分析与解答:这是一道相背问题。所谓相背问题是指两个运动的物体作背向运动的问题。在相背问题中,相遇问题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米。要求几小时能行完36千米,就是求36千米里面有几个12千米。所以,36÷12=3小时。

  练 习 三

  1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?

  2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。经过3小时后,两人相隔60千米。南北两庄相距多少千米?

  3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。两人的速度各是多少?

四年级奥数:行程问题5

  知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

  例题:

  1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。请问A、B两地相距多少千米?

  A.120

  B.100

  C.90

  D.80

  2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。两城市相距()千米

  A.200

  B.150

  C.120

  D.100

  答案:

  1.选择A。解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

  2.选择D。解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

四年级奥数:行程问题6

  1。少先队员346人排成两路纵队去参观画展。队伍行进的速度是23米/分,前面两人都相距1米。现在队伍要通过一座长702米的桥,整个队伍从上桥到离桥共需要几分钟?

  考点:列车过桥问题;植树问题。

  分析:把整个队伍的长度看成是“车长”,先求出“车长”。因为每路纵队有346÷2=173人,前后两人都相距1米,所以,整个队伍的长度是1×(173—1)=172米。车长求出后,就可以求出过桥的时间了。

  解答:解:队伍长:

  1×(346÷2—1),

  =1×(173—1),

  =172(米);

  过桥的时间:

  (702+172)÷23,

  =874÷23,

  =38(分钟)。

  答:整个队伍从上桥到离桥共需要38分钟。

  点评:此题解答时,依据行程问题的一般数量关系:(车长+桥长)÷速度=上桥到离桥的时间。

四年级奥数:行程问题7

  1、在一只野兔跑出90米后,猎狗去追。野兔跑8步的路程,猎狗只需要跑3步。猎狗跑3步的时间,野兔能跑4步。问,猎狗至少跑出多远,才能追上野兔。

  2、小红从甲地往乙地走,小花同时从乙地向甲地走,当各自到达终点后,又迅速返回,行走路程中,各自速度不变,两人第一次相遇时在距甲地40米处,第二次相遇在距乙地15米处,问,甲.乙两地相距多少米。

  解析:

  本题需要根据已知条件找出兔和狗之间的速度关系。野兔跑4步的时间,猎狗跑3步,猎狗的3步,相当于野兔跑8步的路程,它们的速度比为1:2V狗=8/3×3/4V兔=2V兔(V狗-V兔)×T=90=>V狗×T=180,野兔跑出90米后,猎狗去追,猎狗至少跑出180米才能追上野兔。

  解析:

  第一次相遇,两人共行了1个全程,小东行了40米,第一次相遇,两人共行了3个全程,小东行了40×3=120米,同时小东行的还是1个全程多15米,甲乙两地的距离是40×3-15=105米。

四年级奥数:行程问题8

  难度:高难度

  小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?

  讲解:

  解答:由于小红的速度不变,行驶的路程也不变,所以小红行驶的时间也不变,即小强第二次比第一次少行了4分钟,小强第二次行驶的时间是(70×4)÷(90-70)=14分,因此第一次两人相遇时间是18分,距离是(52+70)×18=2196(米).

【四年级奥数:行程问题】相关文章:

奥数行程问题07-14

小学奥数行程问题07-23

奥数题行程问题07-22

有关奥数行程问题07-21

奥数专题:行程问题07-12

行程问题的奥数专题08-02

奥数专题:行程问题08-02

奥数行程问题及解法07-27

行程问题奥数题及答案01-26

小升初奥数-行程相遇问题08-07