数学 百文网手机站

奥数数论数的整除

时间:2021-07-05 15:52:38 数学 我要投稿

奥数数论数的整除

奥数数论数的整除1

  题目:一个五位数恰好等于它各位数字和的20xx倍,则这个五位数是

  答案:因为20xx是9的倍数,所以,这个五位数一定是9的倍数,那么它的各位数字和一定是9的倍数.由于五位数的各位数字之和最大为45,所以,可以从9、18、27、36、45进行试值.

  如果数字和为9,那么这个五位数为,然而18063各位数字之和不为9,所以此时不成立;

  如果数字和为18,那么这个五位数为,36126各位数字之和为18,所以此时成立;

  如果数字和为27,那么这个五位数为,54189各位数字之和为27,所以此时成立;

  如果数字和为36,那么这个五位数为,然而72252各位数字之和不为36,所以此时不成立;如果数字和为45,那么这个五位数为 ,然而90315各位数字之和不为45,所以此时不成立;综上可知,这个五位数为36126或54189.

  分析:此题是利用了9的整除特点,再进行分类枚举来验证。本题看起来觉得无从下手,但是利用9的特点可以得到很多信心,数字3也有同样的效果,所以大家再遇到数论问题时,应该先想一想里面是否有3、9这样特殊的倍数。

奥数数论数的整除2

  一、基本概念和符号:

  1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

  2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;

  二、整除判断方法:

  1。 能被2、5整除:末位上的数字能被2、5整除。

  2。 能被4、25整除:末两位的数字所组成的数能被4、25整除。

  3。 能被8、125整除:末三位的数字所组成的数能被8、125整除。

  4。 能被3、9整除:各个数位上数字的和能被3、9整除。

  5。 能被7整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

  ②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

  6。 能被11整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

  ②奇数位上的数字和与偶数位数的数字和的差能被11整除。

  ③逐次去掉最后一位数字并减去末位数字后能被11整除。

  7。 能被13整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

  ②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

  三、整除的性质:

  1。 如果a、b能被c整除,那么(a+b)与(a—b)也能被c整除。

  2。 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

  3。 如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4。 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

  例题:

  在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?

  解:如果56□2能被9整除,那么

  5+6+□+2=13+□

  应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;

  如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;

  如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

奥数数论数的整除3

  把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

  例如:判断491678能不能被11整除。

  —→奇位数字的和9+6+8=23

  —→偶位数位的和4+1+7=12 23—12=11

  因此,491678能被11整除。

  这种方法叫"奇偶位差法"。

  除上述方法外,还可以用割减法进行判断。即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止。如果余数能被11整除,那么,原来这个数就一定能被11整除。

  又如:判断583能不能被11整除。

  用583减去11的50倍(583—11×50=33)余数是33, 33能被11整除,583也一定能被11整除。

  (1)1与0的特性:

  1是任何整数的约数,即对于任何整数a,总有1|a。

  0是任何非零整数的倍数,a≠0,a为整数,则a|0。

  (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

  (3)若一个整数的数字和能被3整除,则这个整数能被3整除。

  (4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。

  (5)若一个整数的末位是0或5,则这个数能被5整除。

  (6)若一个整数能被2和3整除,则这个数能被6整除。

  (7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

  (8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。

  (9)若一个整数的数字和能被9整除,则这个整数能被9整除。

  (10)若一个整数的末位是0,则这个数能被10整除。

  (11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!

  (12)若一个整数能被3和4整除,则这个数能被12整除。

  (13)若一个整数的个位数字截去,再从余下的数中,加上个位数的'4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

  (14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

  (15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

  (16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

  (17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

  (18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。

奥数数论数的整除4

  例1.在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?

  解:如果56□2能被9整除,那么

  5+6+□+2=13+□

  应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;

  如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;

  如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

  到现在为止,我们已经学过能被2,3,5,4,8,9整除的数的特征。根据整除的性质3,我们可以把判断整除的范围进一步扩大。例如,判断一个数能否被6整除,因为6=2×3,2与3互质,所以如果这个数既能被2整除又能被3整除,那么根据整除的性质3,可判定这个数能被6整除。同理,判断一个数能否被12整除,只需判断这个数能否同时被3和4整除;判断一个数能否被72整除,只需判断这个数能否同时被8和9整除;如此等等。

【奥数数论数的整除】相关文章:

能被3整除的数教案04-03

奥数经典习题10-13

奥数是如何与小升初挂钩的08-20

小学奥数提升题10-14

小升初奥数试卷及答案09-06

《能被3整除的数的特征》优秀教案(精选7篇)03-03

小升初奥数练习题03-14

小升初奥数易错题归纳08-20

小升初不可错过的奥数公式08-12

小升初数学奥数题试卷08-20