五年级奥数牛吃草问题

时间:2023-08-22 10:51:23 晓怡 数学 我要投稿
  • 相关推荐

五年级奥数牛吃草问题

  在日常学习、工作生活中,我们都不可避免地要接触到试题,试题是命题者根据测试目标和测试事项编写出来的。什么样的试题才是好试题呢?下面是小编收集整理的五年级奥数牛吃草问题,仅供参考,希望能够帮助到大家。

  五年级奥数牛吃草问题 1

  用“牛吃草”思路解题三步骤:

  1、求草速

  2、求原草量

  3、求问题

  等量关系:总草量=原草量+新长出的草

  例1:牧场上有一片青草,每天匀速生长,这片草地可供24头牛吃6周,或可供18头牛吃10周,问可供19头牛吃多少周?

  先求草速:

  再求原草量:

  最后求问题:

  ①一片草地可供10头牛吃20天,或可供15头牛吃10天,问可供25头牛吃多少天?

  ②一片草地可供27头牛吃6天,或可供23头牛吃9天,问可供21头牛吃多少天?

  例2:有一片青草,每天匀速生长,这片草地可供8头牛吃20天,或可供14头牛吃10天,问如果要在12天内吃完牧草,需要几头牛?

  ①有一片青草,每天匀速生长,这片草地可供40头牛吃10天,或可供30头牛吃20天,那么可供几头牛吃12天?

  ②由于天渐冷,牧场上的草不仅不长,反而以固定的速度减少,已知草地上的草可供20头牛吃5天,或可供15头牛吃6天,那么可供几头牛吃10天?

  ③有口井连续不断涌出泉水,每分涌出水量相等,如果用4架抽水机来抽水,40分钟可抽完,如果用5架抽水机30分钟抽完,现在要在24分钟内抽完,需抽水机多少架?

  例3:有一片青草,每天匀速生长,这片草地可供20头牛吃12天,或可供60只羊牛吃24天,如果一头牛吃草量等于4只羊的吃草量,那么12头牛与88只羊在一起吃可以吃几天?

  ①一片青草,每天匀速生长,这片草地可供10头牛吃20天,或可供60只羊吃10天,如果一头牛吃草量等于4只羊的吃草量。那么10头牛与60羊一起吃,可以吃几天?

  ②一只船有了漏洞,水以均匀的速度进入船内,当人们发现时,已经漏进了一些水。此时如果派12人往外舀水,3小时可以舀完;如果派5人舀水,10小时才能舀完。现在想用2小时把水舀完,需用多少人参加舀水?

  例4:有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完,现有若干头牛吃了6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头?

  ①有一牧场,8头牛20天可将草吃完,14头牛则10天可将草吃完,现有若干头牛吃了4天后又增加6头,这样又吃了2天便将草吃完,问原来有牛多少头?

  ②某商店自动扶梯以均匀速度由下往上行驶,两个性急的孩子要从扶梯上楼,已知男孩每分钟走20级,女孩每分钟走15级,结果男孩用5分钟到楼上,女孩用6分钟到楼上,问扶梯共有多少级?

  例5:某公园早上7点开门,但开门前已来了不少人,游客还在以匀速增加,若每分钟进6人,则7点30分门口才没有人排队,若每分钟进9人,则到7点12分就没人排队,现要求开门后5分钟门口就没有人排队,每分钟应放多少人?

  ①某体育馆举行篮球赛,晚上7点半比赛,但6点半开门时门口已有不少球迷排队,如果10个门都打开,每个门每分钟进9人,则30分钟后门口无人排队,如果10个门都打开,每个门每分钟进10人,则15分钟,无人排队,现在要求在开门5分钟后无人排队,每个门每分进几人?

  ②假设地球上新生成的资源的增加速度是固定不变的,照这样计算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为使人类有不断发展的潜力,问地球最多能养活多少人?

  五年级奥数牛吃草问题 2

  牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?

  答案与解析:

  设1头牛1天的吃草量为“1”,10头牛吃20天共吃了10×20=200份;15头牛吃10天共吃了15×10=150份.第一种吃法比第二种吃法多吃了200-150=50份草,这50份草是牧场的草20-10=10天生长处来的,所以每天生长的草量为50÷10=5,那么原有草量为:200-5×20=100,供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100÷20=5(天)可将原有牧草吃完,即可供25头牛吃5天.

  五年级奥数牛吃草问题 3

  有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管.进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入了一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几个出水管?

  考点:牛吃草问题.

  分析:假设打开一根出水管每小时可排水“1份”,那么8根出水管开3小时共排出水8×3=24(份);5根出水管开6小时共排出水5×6=30(份);两种情况比较,可知3小时内进水管放进的水是30-24=6(份);进水管每小时放进的水是6÷3=2(份);在4.5小时内,池内原有的水加上进水管放进的水,共有8×3+(4.5-3)×2=27(份).由此解答即可.

  解:设打开一根出水管每小时可排出水“1份”,8根出水管开3小时共排出水8×3=24(份);5根出水管开6小时共排出水5×6=30(份).

  30-24=6(份),这6份是“6-3=3”小时内进水管放进的水.

  最想念的五年级奥数题及答案牛吃草问题:(30-24)÷(6-3)=6÷3=2(份),这“2份”就是进水管每小时进的水.

  [8×3+(4.5-3)×2]÷4.5

  =[24+1.5×2]÷4.5

  =27÷4.5

  =6(根)

  答:需同时打开6根出水管.

  点评:此题属于牛吃草问题,解答关键是把打开一根出水管每小时可排水“1份”,进一步分析推理求解.

  五年级奥数牛吃草问题 4

  牛吃草问题:(高等难度)

  牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天?

  牛吃草答案:

  【分析】设1头牛一天吃的草为1份。那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。前者的总草量是200份,后者的总草量是150份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的草。

  200-150=50(份),20-10=10(天),

  说明牧场10天长草50份,1天长草5份。也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。由此得出,牧场上原有草

  (l0-5)× 20=100(份)或(15-5)×10=100(份)。

  现在已经知道原有草100份,每天新长出草5份。当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

  五年级奥数牛吃草问题 5

  有一片牧场,草每天都在均匀的生长。如果在牧场上放养24头牛,那么6天就可以把草吃完;如果放养21头牛,8天可以把草吃完。那么:

  (1)要让草永远吃不完,最多放养多少头牛;

  (2)如果放养36头牛,多少天可以把草吃完?

  牛吃草答案:

  (1)设1头牛1天的吃草量为"1",那么天生长的草量为

  所以,每天生长的草量为

  也就是说,每天生长的草量可以供12头牛吃1天。那么要让草永远也吃不完,最多放养12头牛。

  (2)原有草量,可供36头牛吃。

【五年级奥数牛吃草问题】相关文章:

“牛吃草”奥数问题11-10

小学奥数牛吃草问题01-27

牛吃草问题的奥数题及答案01-20

奥数专题关于牛吃草的问题05-15

关于牛吃草奥数题目07-24

小学五年级牛牛吃草奥数题01-27

奥数问题之还原问题08-02

奥数问题中的盈亏问题12-05

奥数专题:行程问题07-31

小学奥数相遇问题06-20