数学 百文网手机站

奥数十道博弈题目

时间:2021-07-05 16:55:55 数学 我要投稿

奥数十道博弈题目

  【1】有1001根火柴放在盒子里,甲、乙两人轮流各取1根或2根,取到最后一根者为胜。必胜的最佳对策是什么?

  【2】在黑板上写下一列连续的自然数:2、3、4、…、1999、2000,甲先擦去其中一个数,然后乙再擦去一个数。如此轮流地擦下去。若最后剩下两个质数时,甲取胜;若最后剩下两个数不互质时,乙取胜。这个游戏中谁取胜的可能性最大?

  【3】两人轮流在圆桌面上摆硬币,每次摆一枚,各个不能互相重叠,也不能有一部分在桌面的边缘以外。这样经过反复多次以后,谁先摆不下硬币就算输。谁有必胜的策略?取胜的策略是什么?

  【4】请你参加一种游戏:有1996个棋子,两人轮流取棋子,每次允许取其中2个、4个或8个,谁最后把棋子取完,就算获胜。如果你先取,那么第一次你取多少个?先取的人有一个必胜的方法,如果你已想出这个办法,请写出来。

  【5】桌子上有a颗棋子,甲、乙两人轮流拿棋子,他们规定:假如甲先拿,可以拿任意颗棋子,但不能拿光。接着乙拿,乙拿的棋子数最多只能比甲拿的多一个。接着甲拿,最多只能比乙刚才拿的数目多一个。接着乙拿,最多只能比甲刚才拿的'数目多一个。如此下去,最后一步谁把棋子拿光就算胜者。

  【6】两人按自然数轮流报数,每人每次只能报1或2个数,比如第1个人可以报1,第2个人可以报2或2、3;第1个人也可以报1、2,第2个人可以报3或3、4,这样继续下去,谁报到30,谁就胜。请问谁有必胜的策略?

  【7】甲、乙两人在计算机上玩如下游戏,两人轮流从数中减去该数的一个非零数字得一个数,然后再从新数中减去它的一个非零整数,重复以上过程直至一人无数可减时,则此人为负,试,最终是先开始游戏的人获胜还是后开始的人获胜?有无必胜的对策?

  【8】 n个“一”排成一行,甲、乙轮流改写“-”为“+”,每次只准改一个或相邻的两个,先得全部“+”者胜,若甲先改,请问甲是否有必胜的策略?

  【9】 m、n是自然数,甲、乙二人轮番在m×n的方棋盘的每个格内放棋子,甲先放第一个棋子,乙只能在与上述棋子相邻的某格内放棋子(相邻格指有一条公共边的两个格),甲再放时又必须在与乙所放的棋子相邻的某格内放棋子,以后轮番放棋子时也遵守这个规则,谁无法放棋子时谁失败,为避免失误,你愿意先放还是后放?

  【10】 在n×n的方格盘中,把其中n-1个方格染成黑色,其余中不染色,染完后,允许按下述操作把某些未染色的方格染上黑色,规则是:只要是某个未染色的方格与两个黑色方格相邻(如果两个方格有一条公共边,就称这两个方格相邻),就把这个方格染黑,证明:按照这种规则操作下去,不能把整个棋盘全染成黑色。

【奥数十道博弈题目】相关文章:

奥数博弈专题的问题07-13

奥数专题之博弈问题精选07-12

小升初奥数题目07-14

奥数题目答案07-06

小学奥数题目07-06

小学经典奥数题目07-08

小学奥数专题之博弈问题07-13

小学数学奥数题目07-08

奥数的牛吃草题目07-09