数学 百文网手机站

数学复习的资料

时间:2021-07-01 15:51:59 数学 我要投稿

数学复习的资料范文

数学复习的资料范文1

  简单最优化问题

数学复习的资料范文

  Eg1.一个车队有三辆汽车,担负着五家工厂的运输任务,这五家工厂分别需要7、9、4、10、6名装卸工,共计36名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只要在装卸任务较多的工厂再安排一些装卸工就能完装卸任务,那么在这种情况下,总共至少需要( )名装卸工才能保证各厂的装卸要求?

  A.26 B.27 C.28 D.29

  答案:A。解析:每车跟6个装卸工,在第一家,第二家,第四家工厂分别安排1,3,4个人是最佳方案。事实上,有M辆汽车担负N家工厂的运输任务,当 M小于N时,只需把装卸工最多的M家工厂的人数加起来即可,具体此题中即10+9+7=26。而当M大于或等于N时需要把各个工厂的人数相加即可。

  Eg2.把7个3×4的长方形不重叠的拼成一个长方形。那么,这个大长方形的周长的最小值是多少?

  A.34 B.38 C.40 D.50

  答案B。解析:操作题,可将4个长方形竖放,3个横放,可得一个大长方形,长为12,宽为7,故周长为(12+7)×2=38。

  注:当面积一定时,长,宽越接近,周长则越小。

数学复习的资料范文2

  知识要点:

  1、计量物品轻重的单位有克、千克、吨。

  2、计量较轻的物品有多重,通常用克作单位,克用字母g表示。

  3、计量较重的物品有多重,通常用千克作单位,也叫公斤,千克用字母kg表示。1kg=1000g

  4、计量很重的物品有多重,通常用吨作单位。吨用字母t表示。1t=1000kg

  5、相邻质量单位间的进率是1000。40个25千克的学生重1吨。

  5、1T=1000kg1kg=1000g.

  6、换算:单位相互换算的方法

  (1)把吨化成千克,千克化成克,是用吨数或千克数乘进率1000。

  (2)把千克化成吨,克化成千克,是用千克数或克数除以进率1000。

  口诀:小换大减三个0,大换小加三个0

  如:把克换成千克、千克换成吨去掉3个0,把吨换成千克、千克换成克加上3个0.

  7、重量的大小比较

  记忆:先统一单位,再比较大小。

  应用

  1、1枚2分硬币重1克;一袋食盐重500克,2袋食盐重1kg。1个鸡蛋的重量大约是50g,1个苹果的重量大约是250g。

  2、5本数学书的重量大约是1kg。1个小学生的体重大约是25kg,4个小学生的体重大约是100kg,40个小学生的体重大约是1吨。一头大象约重6吨。

  3、计算:1吨+3000千克=()吨,方法是当相加或相减的数单位不一样时,要先换成统一的单位后在计算。

  注意:1㎏棉花和1㎏铁一样重。

数学复习的资料范文3

  第一章 行列式

  本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。数值型行列式的计算不会以单独题目的形式考查,但是在解决线性方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的计算;而抽象型行列式的计算问题会以填空题的形式展现,在历年考研真题中可以找到有关抽象型行列式的计算问题。

  因此,在复习期间行列式这块要做到利用行列式的性质及展开定理熟练的、准确的计算出数值型行列式的值,不论是高阶的还是低阶的都要会计算。另外还要会综合后面的知识会计算简单的抽象行列式的值。

  第二章 矩阵

  本章需要重点掌握的基本概念有可逆矩阵、伴随矩阵、分块矩阵和初等矩阵,可逆阵与伴随矩阵的相关性质也很重要,也是需要掌握的。除了这些就是矩阵的基本运算,可以将矩阵的运算分为两个层次:

  1、矩阵的符号运算

  2、具体矩阵的数值运算

  矩阵的符号运算就是利用相关矩阵的性质对给出的矩阵等式进行化简,而具体矩阵的数值运算主要指矩阵的乘法运算、求逆运算等。

  第三章 向量

  本章的重点有:

  1、向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。

  2、向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。

  第四章 线性方程组

  本章的重点是利用向量这个工具解决线性方程组解的判定及解的结构问题。题目基本没有难度,但是大家在复习的时候要注意将向量与线性方程组两章的知识内容联系起来,学会融会贯通。

  第五章 特征值与特征向量

  本章的基本要求有三点:

  1、要会求特征值、特征向量

  对于具体给定的数值型矩阵,一般方法是通过特征方程∣λE-A∣=0求出特征值,然后通过求解齐次线性方程组(λE-A)ξ=0的非零解得出对应特征值的特征向量,而对于抽象的矩阵来说,在求特征值时主要考虑利用定义Aξ=λξ,另外还要注意特征值与特征向量的性质及其应用。

  2、矩阵的相似对角化问题

  要求掌握一般矩阵相似对角化的条件,但是重点是实对称矩阵的相似对角化,即实对称矩阵的正交相似于对角阵。这块的知识出题比较灵活,可直接出题,也可以根据矩阵A的特征值、特征向量来确定矩阵A中的参数或者确定矩阵A。另外由于实对称矩阵不同特征值的特征向量是相互正交的,这样还可以由已知特征值λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出矩阵A。

  3、相似对角化之后的应用,主要是利用矩阵的相似对角化计算行列式或者求矩阵的方幂。

  第六章 二次型

  二次型这一章的重点实质还是实对称矩阵的正交相似对角化问题。这一章节要求大家掌握二次型的矩阵表示,用矩阵的方法研究二次型的问题主要有两个:

  1、化二次型为标准形

  主要是利用正交变换法化二次型为标准型,这是考研数学线性代数的重点大题题型,考生一定要掌握其做题的基本步骤。化二次型为标准型的实质也是实对称矩阵的正交相似对角化问题。

  2、二次型的正定性问题

  这一知识点主要考查小题。对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象矩阵的正定性判断可以通过利用标准形,规范形,特征值等得到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

数学复习的资料范文4

  1、正数:像小学学过的大于0的数叫做正数。

  2、负数:在正数前面加上负号“-”的数叫做负数。

  3、正数负数的判断方法:

  ⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。

  ⑵含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。

  4、 0的含义:①0表示起点。②0表示没有。③0表示一种温度。④0表示编号的位数。⑤0表示精确度。⑥0表示正负数的分界。⑦0表示海拔平均高度。

  5、 具有相反意义的量;

  6、 正负数的作用:在同一问题中,用正负数表示的量具有相反的意义。

  有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  有理数除法法则:

  除以一个数等于乘以这个数的倒数;注意:零不能做除数.

  有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

数学复习的资料范文5

  1指数的扩充

  2分式和分式的基本性质

  设f,g是一元或多元多项式,g的次数高于零次,则称f,g之比f/g为分式

  分式的基本性质分数的分子与分母都乘以或除以同一个不等于0的数,分数的值不变

  3分式的约分和通分

  分式的约分是将分子与分母的公因式约去,使分式化简

  如果一个分式的分子与分母没有一次或一次以上的公因式,且各系数没有大于1的公约数,则此分式成为既约分式既约分式也就是最简分式

  对于分母不相同的几个分式,将每个分式的分子与分母乘以适当的非零多项式,使各分式的分母相同,而各分式的值保持不变,这种运算叫做通分

  4分式的运算

  5分式方程

  方程的两遍都是有理式,这样的方程成为有理方程如果有理方程中含有分式,则称为分式方程

  二次根式

  1根式

  在实数范围内,如果n个x相乘等于a,n是大于1的整数,则称x为a的n次方根

  含有数字与变元的加,减,乘,除,乘方,开方运算,并一定含有变元开方运算的算式成为无理式

  2最简二次根式与同类根式

  具备下列条件的二次根式称为最简二次根式:(1)被开方式的每一个因式的指数都小于开方次数(2)根号内不含有分母

  如果几个二次根式化成最简根式以后,被开方式相同,那么这几个二次根式叫做同类根式

  3二次根式的运算

  4无理方程

  根号里含有未知数的方程叫做无理方程。

  希望同学们能够认真阅读初中数学分式与二次根式,努力提高自己的学习成绩。

数学复习的资料范文6

  第一单元 位置与方向

  1、东与西相对,南与北相对。

  (东南西北)相对,(西南东北)相对

  2、地图通常是按上北下南,左西右东绘制的。

  3、判断位置方向时的两种句式:在字型和的字型

  在字型的以在字后的地点为中心,画上北下南,左西右东作判断。

  的字型的以的字前的地点为中心,画上北下南,左西右东作判断。

  4、简单的线路图的描述:有方向、有距离、有目标。如:从学校向南走500米到新校区。注意公交路线走几站的容易出错,记得起始站不算一站。

  第二单元 除数是一位数的除法

  1、除数是一位数的计算法则:

  (1)除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,

  (2)除到被除数的哪一位,商就写到被除数那一位的上面。

  (3)除到被除数的哪一位不够商1,用0占位。

  (4)每一次除得的余数必须比除数小。

  2、0乘任何数都得0。0除以(任何不是0的)数都得0。

  (注:在除法算式中,0不能做除数)

  3、笔算除法:

  (1) 余数一定要比除数小。

  (2)除法验算:用乘法

  ① 没有余数:商除数=被除数;

  ② 有余数:商除数+余数=被除数

  4、判断商的位数:先看被除数的最高位,被除数最高位大于或等于除数,则商的位数与被除数相同;如果被除数最高位小于除数,则商的位数比被除数少一位。

  第三单元 统 计

  1、平均数: ①平均数 = 总数量总份数。

  ②总数量 = 平均数总份数

  ③总份数 = 总数量 平均数

  2、(平均数)能比较好地反映一组数据的总体情况。

  第四单元 年 月 日

  1、 一年有12个月;一年有4个季度。

  1、2、3月第一季度 90天(平年)91天(闰年)

  4、5、6月第二季度 91天

  7、8、9月第三季度 92天

  10、11、12月 第四季度 92天

  2、记大小月的方法:

  一、三、五、七、八、十、腊,

  31天永不差;

  四、六、九、冬,30天,

  只有2月有变化。

  3、① 平年:2月(28)天,全年(365)天;上半年有(181)天。

  ② 闰年:2月(29)天,全年(366)天,上半年有(182)天。

  ③ 每年下半年都是(184)天。

  4、公历年份是4的倍数的,一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、20xx、2400等是闰年。

  ① 一般的公历年份4,没有余数,就是闰年;

  ② 公历年份是整百的400,没有余数,就是闰年。

  5、年、月、日、时、分、秒都是时间单位。

  6、在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法,通常叫做24时计时法。

  7、普通计时法与24小时计时法的区分:时间前没有标记上午下午等字样的是24小时计时法

  8、普通计时法与24小时计时法的互相转换:

  第一圈(0点到12点):

  由24时制化到普通时制,数字不变,只要添上早上上午等

  由普通时制化到24时制,数字不变,只要去掉早上上午等

  第二圈(12点到24点)

  由24时制化到普通时制,小时数减去12,且要添上早上上午等

  由普通时制化到24时制,小时数加上12,且要去掉早上上午等

  9、经过的天数的计算:

  公式 结束时间开始时间+1=经过的天数

  例如:6月12到6月30日是多少天?(30-12+1=19天)

  10、经过时间的小时数:结束时间-开始时间=经过时间

  如果时间跨过两天,要分为第一天与第二天两段来计算,最后再加起来

  11、计算周年的方法是用(现在的年份-原来的年份=周年)。如:到20xx年10月1日,是中国成立(59)周年。用20xx-1949=59周年

  第五单元 两位数乘两位数

  1、两位数乘两位数

  (1)、先用第二个因数的个位去乘第一个因数,得数末尾与第一个因数的个位对齐。

  (2)、再用第二个因数的十位去乘第一个因数,得数末位与第一个因数的十位对齐。

  (3)、然后把两次乘得的积加起来。

  2、两位数乘两位数积可能是( 三 )位数,也可能是( 四 )位数。

  3、估算:1822,可以先把因数看成整十、整百的数,再去计算。(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

  第六单元 面积

  1、物体的表面或封闭图形的大小,就是他们的面积。

  2、比较两个图形面积的大小,要用统一的面积单位来测量。

  3、常用的面积单位有平方厘米,平方分米、平方米。

  边长(1厘米)的正方形面积是1平方厘米。

  边长(1分米)的正方形面积是1平方分米。

  边长(1米)的正方形面积是1平方米。

  边长(100米)的正方形面积是1公顷(10000平方米)。

  边长1千米(1000米)的正方形面积是1平方千米。

  4、测量土地的面积时,常常要用到更大的面积单位:公顷、平方千米。(如:公园、学校的面积用公顷作单位)、(如:省、市、区或县的面积用平方千米作单位)。

  100 10000 100 100

  平方千米 公顷 平方米 平方分米 平方厘米

  1平方米=100平方分米 1平方分米=100平方厘米

  1公顷=10000平方米 1平方千米=100公顷

  ⑴相邻两个常用的长度单位之间的进率是( 10 )。

  ⑵相邻两个常用的面积单位之间的进率是( 100 )。

  5、长方形的面积=长宽 长 = 面积宽 宽 = 面积 长

  正方形的面积=边长边长

  长方形的周长=(长+宽)2 长 = 周长2-宽 、宽 = 周长2-长

  正方形的周长=边长4 正方形的.边长=周长4

  6、 注 意:

  (1) 面积相等的两个图形,周长不一定相等。

  周长相等的两个图形,面积不一定相等。

  (2) 大单位换算小单位(乘它们之间的进率)

  小单位换算大单位(除以它们之间的进率)

  (3) 长度单位和面积单位的单位不同,无法比较。

  第七单元 小数的初步认识

  1、小数的组成:整数部分、小数部分和小数点

  小数的读法:先读整数部分(按照整数的读法),.读作点,小数部分依次读出数字

  小数的写法:先写整数部分(按照整数的写法),点写作.,小数部分依次写出数字

  2、写小数的类型与方法(写小数不够位时,只需在前面补够0)

  (1)分数与小数

  分母是10的分数写成一位小数(0.1)

  分母是100的分数写成两位小数(0.01)

  分母是1000的分数写成两位小数(0.001)

  (2)单名数的改写(由小单位名改写成大单位名)

  进率是10的写成一位小数

  进率是100的写成两位小数

  进率是1000的写成三位小数

  (3)复名数改写成单名数

  同名部分作整数部分,小单位部分作小数部分

  2、比较两个小数的大小:

  先看整数部分,整数部分大的小数就大。

  整数部分相同的,再比较十分位上的数,十分位上的数大的小数大,十分位上的数相同的再比较百分位上的数

  3、小数加减法计算:

  相同数位对齐 ,也就是小数点对齐。

  要从低位开始算起,位数不够用0补齐。

  在得数里,对齐横线上的小数点,点上小数点。

  4、小数不一定比整数小

数学复习的资料范文7

  平面图形

  图形名称字母的含义周长c 面积 s

  正方形a边长C=4a S=a2

  长方形a长 b-宽C=2(a+b) 或C=2a+2b S=ab

  三角形a---底边 ha 边上的高S= ah 或 S=ah2 或S=

  最新的小升初数学资料复习:梯形S=(a+b)h/a上底 b-下底h-高S= (a+b)h或 S=(a+b)h2

  圆r-半径

  C=rr半径 d-直径

  圆周率d或C=2 S=r2

  d= 或d=c

  r= 或r=c2

  圆环R-外圆半径

  S=(R2-r2)r-内圆半径

  R-外圆半径 环=S外-S内=(R2-r2)

  立体图形

  图形名称字母含义S 面积 V 体积

  正方体a-棱长棱长和=12a S表=6a2 S底= a2

  V= S底h 或 V=a3

  长方体a-长

  S=2(ab+ac+bc)a-长 b-宽

  h-高S表=2(ab+ah+bh)( 两个底面)

  S表ab+2ah+2bh(没盖)S表2ah+2bh(没底面)

  V=abh或V=Sh 棱长和=(a+b+h)4

  圆柱r-C=2r --底面圆半径

  d底面直径

  C底面周长 h-高

  S底底面积

  S侧侧面积

  S表表面积S底= V=S底h=r2h

  S侧=Ch =2d h

  两个底面:S表=S侧+2S底

  没盖:S表= S侧+S底

  没有底面:S表= S侧

  空心管R-外圆半径

  V=h(R2-r2)r-底面内圆半径

  R-底面外圆半径h-高V管=V外-V内=(r2 ) h=(R2-r2) h

  直圆锥r-底半径

  V=r2h/3h-高 r底面半径

  S底面积V= Sh 或 V= r2h

  比、正比例和反比例

  1.比的意义:两个数相除又叫做这两个数的比.

  比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。

  2.比、分数与除法的关系:

  a:b= = ab (b0)

  3.求比值和化简比的联系与区别:

  意义方法结果

  求比值比的前项除以比的后项所得的商叫做比值。①前项除以后项②前项和后项都乘或除以相同的数(0除外)一个数(整数、小数、分数)

  化简比把两个数的比化成最简单的整数比一个最简比

  最简比:前项和后项的最大公约数只有1的比叫最简比。

  5.按比例分配的实际问题

  6.正比例和反比例的区别与联系:

  相同点不同点

  特征关系式

  正比例两种相关联的变化的量两种量中相对应的两个数的比的比值(也就是商)一定 = k(一定)

  反比例两种量中相对应的两个数的积一定xy= k(一定)

数学复习的资料范文8

  盈亏问题:是在等分除法的基础上发展起来的。

  他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。

  解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。

  - 解题规律:总差额每人差额=人数

  - 总差额的求法可以分为以下四种情况:

  - 第一次多余,第二次不足,总差额=多余+ 不足

  - 第一次正好,第二次多余或不足 ,总差额=多余或不足

  - 第一次多余,第二次也多余,总差额=大多余-小多余

  - 第一次不足,第二次也不足, 总差额= 大不足-小不足

  例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人

  分得几支?共有多少支色铅笔?

  分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2

  个人多出 20 支,一个人分得 10 支。列式为( 25-5 )( 12-10 ) =10 (支) 10 12+5=125(支)。

  年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为年龄问题。

  - 解题关键:年龄问题与和差、和倍、

  差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种差不变的问题,解题时,要善于利用差不变的特点。

  例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?

  分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1

  )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21- ( 48-21 )( 4-1 )=12 (年)

  (13)鸡兔问题:已知鸡兔的总头数和总腿数。求鸡和兔各多少只的一类应用题。通常称为鸡兔问题又称鸡兔同笼问题

  - 解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是鸡或全是兔,然后根据出现的腿数差,可推算出某一种的头数。

  - 解题规律:(总腿数-鸡腿数总头数)一只鸡兔腿数的差=兔子只数

  - 兔子只数=(总腿数-2总头数)2

  - 如果假设全是兔子,可以有下面的式子:

  - 鸡的只数=(4总头数-总腿数)2

  - 兔的头数=总头数-鸡的只数

  例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?

  兔子只数 ( 170-2 50 ) 2 =35 (只)

  鸡的只数 50-35=15 (只)

  分数和百分数的应用

  1 分数加减法应用题:

  - 分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

  2分数乘法应用题:

  - 是指已知一个数,求它的几分之几是多少的应用题。

  - 特征:已知单位1的量和分率,求与分率所对应的实际数量。

  - 解题关键:准确判断单位1的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

  3 分数除法应用题:

  - 求一个数是另一个数的几分之几(或百分之几)是多少。

  特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。一个数是比较量,另一个数是标准量。求分率或百分率,也就是求他们的倍数关系。

  - 解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了单位一,谁和单位一的量作比较,谁就作被除数。

  - 甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

  - 甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。

数学复习的资料范文9

  考纲要求

  1.会从实际情境中抽象出二元一次不等式组.

  2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

  3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

  考纲研读

  二元一次不等式表示相应直线 Ax+By+C=0 某一侧所有点组成的平面区域,可结合交集的概念去理解不等式组表示的平面区域.对于线性规划问题,能通过平移直线求目标函数的最值.对于实际问题,能转化成两个相关变量有关的不等式(组),再利用线性规划知识求解.

数学复习的资料范文10

  相遇时间=相遇路程÷速度和

  练习:填空

  4 .一桶汽油重25千克,用去 ,剩下多少千克?

  列方程解应用题

  (2妈妈买了2千克白菜,每千克2.4元,又买了X千克萝卜,每千克2.8元。一共用去

  (3)海滨县兴隆农场种小麦189公顷,小麦播种面积是玉米的112.5%,种玉米多少公顷?

  (5)一支工程队修一条公路。第一天修了38米,第二天修了42米。第二天比第一天多修的是这条路全长的 。这条路全长多少米?

  3.一张课桌比一把椅子贵10元,椅子的单价是课桌的 ,课桌和椅子的单价各是多少元?

  3.商店运来一些水果,梨的重量是苹果的 ,苹果的重量是橘子的 。运来橘子900千克,运来梨多少千克?

  ③.红花比兰花少几分之几? ④ .兰花比红花多几分之几?

  百分数应用题(一)

  百分数应用题(二)

  3.五年级有女生160人,比男生少20%。五年级共有多少人?

  4.有一袋米,第一周吃了40%,第二周吃了6千克,第一周比第二周多吃300%。这袋米共多少千克?

  反比例两种量中相对应的两个数的积一定x×= (一定)

  8.一块铜锌合金重180克,铜与锌的比是2:3,锌重( )克。如果再熔入30克锌,这时铜与锌的比是( )。

  3. 甲乙两地在比例尺是1:20000000的地图上长4厘米,乙丙两地相距500千米,画在这幅地图上,应画多长?一辆汽车以每小时200千米的速度从甲地经过乙地,去丙地需要多少小时?

  2.要用面积是1平方分米的正方形拼一个面积是24平方分米的长方形,可以怎样拼?如果要给长方形四周镶上花边,花边最短长多少分米?(先列表再解答)

  9.一种易拉罐高12厘米,底面直径6厘米,生产一个易拉罐需多少平方厘米的铝合金材料?如果把24罐装一盒,你准备怎样包装,需要用多少平方分米的硬纸板?(请写出你的包装方案)

  10.用一个底面是边长8厘米的正方形,高为17厘米的长方体容器,测量一个球形铁块的体积,容器中装的水距杯口还有2厘米。当铁块放入容器中,有部分水溢出,当把铁块取出后,水面下降5厘米,求铁球的体积。

【数学复习的资料】相关文章:

 数学总复习复习资料06-14

中考数学的复习资料03-31

数学与语文复习资料06-15

小学数学复习资料06-14

小学数学的复习资料06-14

高考数学复习资料06-14

数学整理复习资料02-23

中考数学综合复习资料03-31

小学数学总复习资料精选06-14