数学计算的6个技巧

时间:2024-03-26 23:05:32 王娟 数学 我要投稿
  • 相关推荐

数学计算的6个技巧

  掌握良好的速算技巧,是让孩子们在最短的时间内,学好速算的关键之处,所以,家长要善于引导孩子们发现和使用速算技巧,并且多多将这些技巧进行验证,让这些技巧好好为孩子服务。下面是小编为大家整理的关于数学计算的6个技巧的内容,欢迎阅读与收藏。

数学计算的6个技巧

  数学计算的6个技巧

  1.十几乘十几:

  口诀:头乘头,尾加尾,尾乘尾。

  例:12×14=?

  解: 1×1=1

  2+4=6

  2×4=8

  12×14=168

  注:个位相乘,不够两位数要用0占位。

  2.头相同,尾互补(尾相加等于10):

  口诀:一个头加1后,头乘头,尾乘尾。

  例:23×27=?

  解:2+1=3

  2×3=6

  3×7=21

  23×27=621

  注:个位相乘,不够两位数要用0占位。

  3.第一个乘数互补,另一个乘数数字相同:

  口诀:一个头加1后,头乘头,尾乘尾。

  例:37×44=?

  解:3+1=4

  4×4=16

  7×4=28

  37×44=1628

  注:个位相乘,不够两位数要用0占位。

  4.几十一乘几十一:

  口诀:头乘头,头加头,尾乘尾。

  例:21×41=?

  解:2×4=8

  2+4=6

  1×1=1

  21×41=861

  5.11乘任意数:

  口诀:首尾不动下落,中间之和下拉。

  例:11×23125=?

  解:2+3=5

  3+1=4

  1+2=3

  2+5=7

  2和5分别在首尾

  11×23125=254375

  注:和满十要进一。

  6.十几乘任意数:

  口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

  例:13×326=?

  解:13个位是3

  3×3+2=11

  3×2+6=12

  3×6=18

  13×326=4238

  注:和满十要进一。

  数学计算口诀

  口诀一

  1.有理数的加法运算:

  同号相加一边倒;异号相加“大”减“小”,

  符号跟着大的跑;绝对值相等“零”正好。

  2.合并同类项:

  合并同类项,法则不能忘,

  只求系数和,字母、指数不变样。

  3.去、添括号法则:

  去括号、添括号,关键看符号,

  括号前面是正号,去、添括号不变号,

  括号前面是负号,去、添括号都变号。

  4.一元一次方程:

  已知未知要分离,分离方法就是移,

  加减移项要变号,乘除移了要颠倒。

  5.平方差公式:

  平方差公式有两项,符号相反切记牢,

  首加尾乘首减尾,莫与完全公式相混淆。

  口诀二

  1.完全平方公式:

  完全平方有三项,首尾符号是同乡,

  首平方、尾平方,首尾二倍放中央;

  首±尾括号带平方,尾项符号随中央。

  2.因式分解:

  一提(公因式)二套(公式)三分组,

  细看几项不离谱,

  两项只用平方差,

  三项十字相乘法,

  阵法熟练不马虎,

  四项仔细看清楚,

  若有三个平方数(项),

  就用一三来分组,

  否则二二去分组,

  五项、六项更多项,

  二三、三三试分组,

  以上若都行不通,拆项、添项看清楚。

  3.单项式运算:

  加、减、乘、除、乘(开)方,

  三级运算分得清,

  系数进行同级(运)算,

  指数运算降级(进)行。

  4.一元一次不等式解题的一般步骤:

  去分母、去括号,移项时候要变号,

  同类项合并好,再把系数来除掉,

  两边除(以)负数时,不等号改向别忘了。

  5.一元一次不等式组的解集:

  大大取较大,小小取较小,

  小大、大小取中间,

  大小、小大无处找。

  6.一元二次不等式、一元一次绝对值不等式的解集:

  大(鱼)于(吃)取两边,

  小(鱼)于(吃)取中间。

  口诀三

  1.分式混合运算法则:

  分式四则运算,顺序乘除加减,

  乘除同级运算,除法符号须变(乘);

  乘法进行化简,因式分解在先,

  分子分母相约,然后再行运算;

  加减分母需同,分母化积关键;

  找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简。

  2.分式方程的解法步骤:

  同乘最简公分母,化成整式写清楚,

  求得解后须验根,原(根)留、增(根)舍,别含糊。

  3.最简根式的条件:

  最简根式三条件,号内不把分母含,

  幂指数(根指数)要互质、幂指比根指小一点。

  4.特殊点的坐标特征:

  坐标平面点(x,y),横在前来纵在后;

  (+,+) ,(-,+),(-,-)和(+,-),四个象限分前后;

  x轴上y为0,x为0在y轴。

  5.象限角的平分线:

  象限角的平分线,坐标特征有特点,

  一、三横纵都相等,二、四横纵却相反。

  6.平行某轴的直线:

  平行某轴的直线,点的坐标有讲究,

  直线平行x轴,纵坐标相等横不同;

  直线平行于y轴,点的横坐标仍照旧。

  7.对称点的坐标:

  对称点坐标要记牢,相反数位置莫混淆,

  x轴对称y相反,y轴对称x相反;

  原点对称最好记,横纵坐标全变号。

  口诀四

  1.自变量的取值范围:

  分式分母不为零,偶次根下负不行;

  零次幂底数不为零,整式、奇次根全能行。

  2.函数图象的移动规律:

  左右平移在括号,上下平移在末稍,

  左正右负须牢记,上正下负错不了。

  3.一次函数的图象与性质的口诀:

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,

  k是斜率定夹角,b与y轴来相见,

  k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远。

  4.二次函数的图象与性质的口诀:

  二次函数抛物线,图象对称是关键;

  开口、顶点和交点,它们确定图象现;

  开口、大小由a断,c与y轴来相见;

  b的符号较特别,符号与a相关联;

  顶点位置先找见,y轴作为参考线;

  左同右异中为0,牢记心中莫混乱;

  顶点坐标最重要,一般式配方它就现;

  横标即为对称轴,纵标函数最值见。

  若求对称轴位置,符号反,

  一般、顶点、交点式,不同表达能互换。

  5.反比例函数的图象与性质的口诀:

  反比例函数有特点,双曲线相背离得远。

  k为正,图在一、三(象)限;

  k为负,图在二、四(象)限。

  图在一、三函数减,两个分支分别减;

  图在二、四正相反,两个分支分别增。

  线越长越近轴,永远与轴不沾边。

  口诀五

  1.特殊三角函数值记忆:

  记住30度、45度、60度的正弦值、余弦值的分母都是2;

  正切、余切的分母都是3;

  分子记口诀“123,321,三九二十七”既可。

  三角函数的增减性:正增余减

  2.平行四边形的判定:

  要证平行四边形,两个条件才能行,

  一证对边都相等,或证对边都平行,

  一组对边也可以,必须相等且平行。

  对角线,是个宝,互相平分“跑不了”,

  对角相等也有用,“两组对角”才能成。

  3.梯形问题的辅助线:

  移动梯形对角线,两腰之和成一线;

  平行移动一条腰,两腰同在“△”现;

  延长两腰交一点,“△”中有平行线;

  作出梯形两高线,矩形显示在眼前;

  已知腰上一中线,莫忘作出中位线。

  4.添加辅助线歌:

  辅助线,怎么添?找出规律是关键。

  题中若有角(平)分线,可向两边作垂线;

  线段垂直平分线,引向两端把线连;

  三角形边两中点,连接则成中位线;

  三角形中有中线,延长中线翻一番。

  口诀六

  圆的证明歌:

  圆的证明不算难,常把半径直径连;

  有弦可作弦心距,它定垂直平分弦;

  直径是圆最大弦,直圆周角立上边,

  它若垂直平分弦,垂径、射影响耳边;

  还有与圆有关角,勿忘相互有关联,

  圆周、圆心、弦切角,细找关系把线连。

  同弧圆周角相等,证题用它最多见,

  圆中若有弦切角,夹弧找到就好办;

  圆有内接四边形,对角互补记心间,

  外角等于内对角,四边形定内接圆;

  直角相对或共弦,试试加个辅助圆;

  若是证题打转转,四点共圆可解难;

  要想证明圆切线,垂直半径过外端,

  直线与圆有共点,证垂直来半径连,

  直线与圆未给点,需证半径作垂线;

  四边形有内切圆,对边和等是条件;

  如果遇到圆与圆,弄清位置很关键。

【数学计算的6个技巧】相关文章:

中考数学技巧06-08

数学的高分复习技巧10-28

数学怎么画的技巧03-12

数学语文备考技巧11-27

GMAT数学备考的技巧11-23

GMAT数学备考技巧11-23

物理计算题答题技巧介绍09-08

数学压轴题解答技巧04-25

高考数学导数大题技巧08-28

初三数学技巧总结11-25