数学 百文网手机站

高一数学解题的技巧介绍

时间:2022-02-18 19:30:01 数学 我要投稿

高一数学解题的技巧介绍(通用8篇)

  高中数学必修部分 集合与函数的概念 基本初等函数I 函数的应用 空间几何体 点 直线 平面之间的位置 直线与方程 圆与方程 算法初步 统计 概率 三角函数 平面向量下面小编带来的高一数学解题的技巧介绍。

高一数学解题的技巧介绍(通用8篇)

  高一数学解题的技巧介绍 篇1

  数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段:理解问题是解题思维活动的开始。 第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。

  数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于变换,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。

  一、 熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有:

  (一)、充分联想回忆基本知识和题型: 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

  (二)、全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

  (三)恰当构造辅助元素: 数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。 数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

  二、简单化策略 所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。 简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。 因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。 解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

  1、寻求中间环节,挖掘隐含条件: 在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。 因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

  2、分类考察讨论: 在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

  3、简单化已知条件: 有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

  4、恰当分解结论: 有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

  三、直观化策略: 所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

  (一)、图表直观: 有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以以进行到底。 对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。

  (二)、图形直观: 有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。

  (三)、图象直观: 不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。

  四、特殊化策略 所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

  五、一般化策略 所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。

  六、整体化策略 所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。

  七、间接化策略 所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。

  高一数学解题的技巧介绍 篇2

  高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。

  数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为O,其半径为1,圆中有一定点为A,有一动点为P,AP之间夹角为x,过P点做OA垂线,M为其垂足。假设M到OP之间的距离为函数f(x),求y=f(x)在[0,?仔]的图像形状。”

  这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。

  根据题目已知条件可知圆的半径为1,所以OP=1,∠POM=x,OM=|cos|,然后我们可以建立关于f(x)的函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。

  高一数学解题的技巧介绍 篇3

  一、《集合与函数》

  内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

  复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

  指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

  函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

  正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

  求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

  奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

  二、《立体几何》

  点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

  垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

  方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

  立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

  异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

  三、《平面解析几何》

  有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

  笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

  两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

  三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

  四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

  解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

  拓展阅读:高二文科生数学学法指导

  总的来说,可以分为8大部分:函数、数列、立体几何、解析几何、排列组合、不等式、平面向量、二项式定理以及统计。其中,尤其以函数和几何较为难学,同时也是重点内容,要弄清楚它们各自的特点以及相互之间的联系,这些都是最基本的内容。而要做到这一点,首先就要对课本上的一些基本的概念、定理、公式了如指掌,用的时候才能从容不迫,信手拈来。但是,这些往往也是最容易被忽视的——大家都忙着做一道又一道的习题,买一本又一本厚厚的习题书,哪有时间去看课本?

  有些同学可能会想,数学又不是、,书上的习题又大都极简单,何必看课本呢?殊不知,课本对于数学来说,也是很重要的。数学有20%的基础题目,只要花上一点点时间把课本好好看看,要拿下这些题易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题也不可能做得很好,毕竟这些都是基础啊。数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求一定要清晰明了,是不太可能出现做出题目却不知是如何做对的情况的,因而基础知识十分重要。

  其次,相当多的习题自然是必不可少的。在理解了基本的概念以后,必须要做大量的练习,这样才能巩固所学到的知识,加深对概念的了解。所谓熟能生巧,数学最能体现这句话的哲理性。数学的思维、解题的技巧,只有在做题中摸索,印象才会深刻,运用起来才会得心应手。当然,这并不是提倡题海战术,适量就可,习题做得太多,很容易产生厌烦情绪。最重要的还是选题,一定要选好题、精题。在这一方面,的建议是很值得考虑的,最好买推荐的参考。同时做题还要根据自己的实际情况。一般而言,要先做基础题,把基础打牢固,然后再逐步加深难度,做一些提高性的题目。每一个知识点都要做一定量的上难度的题来巩固,这样才能将其牢牢掌握做完每个题之后,要回头看一遍(尤其是难题),想想做这一题有什么收获,这样,就不会做了很多题却没有什么效果。

  运算也是很重要的一个环节,与的重要性不相上下。培养一种发散性思维,寻求解题的多种,当然非常重要。但是,有一些同学,他们具有很强的思维,能够从多种角度思考问题,可是计算却不强,平时也不训练,时往往是找对了却算错了答案,非常可惜。的确 高中政治,繁琐的运算是令人望而生畏的,但是,在运算过程中你将发现许多新的问题,而运算也就在训练中渐渐提高了。因而,数学方法要与计算并重。一方面,要重视做题方法的训练,从多角度、多方面去思考问题;同时,也要注意锻炼计算能力,注重计算的精确性,而不能偏向一方。

  总结。把专题的卷子和综合的卷子分门别类,每一份都进行认真细致的总结,挑出其中含金量最高的题,同时,“旁征博引”,把曾经遇到过的相关的题目总结到一起,一道也不放过。这样总结下来,一定能对各类题型都能够了如指掌,对出题者的出题角度也有了准确的把握。通过对上百份的细致归纳总结,很多同学的数学都有了大幅度的提高。需要强调的是在总结试卷的过程中一定要深入下去,千万不能走形式,只有深入方能有所收获。在深入的过程中不要在乎时间,有时候,在总结一道大题时,会把相关的题型总结到一起,这项其实是相当繁杂的,绝不等同于弄懂一道题。而做这项的收益也将是巨大的。所以,即使用一个晚上来做这件事也非常值得。千万不要心情急躁,看见别人一道接一道的做题而不安。

  平时的学习要注意以下几点:

  1、按部就班。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

  2、强调理解。概念、定理、公式要在理解的基础上。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

  3、基本训练。学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。

  4、重视平时考试出现的错误。订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。

  的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。

  高一数学解题的技巧介绍 篇4

  基础知识不扎实

  初中教学同样受升学压力的影响,为了挤出更多的时间复习迎考,挤压新课学习时间,删减未列入考试的内容或自认为考试不重要的内容,造成学生知识结构不完整,基础知识掌握不扎实,如初中对函数和平面几何等内容的新课学习时间不够,学生感到困难,带着这样的阴影学生到高中碰到函数和立体几何等内容的学习就感到恐惧,没有学就产生了畏难情绪。

  学习习惯和方法的指导不够

  初中教学不太关注对学生学习习惯和方法的指导,忽视对数学思想方法的培养和渗透(现在学生的认知水平是可以接受的),热衷于通过大量的练习模仿来掌握解题方法,如对初中二次函数的学习。

  高一数学解题的技巧介绍 篇5

  考点:对于数列,我对大家的要求不是很高,我只是希望大家能尽自己的所能,尽量的去多拿分数,如果要是有人能全部做对,我也替你高兴,这类题型,主要是考大家对等比等差数列的理解,包括通项与求和,难度还是有的,其实你要是留意生活的话,这类题还是不是我们想象中那么困难哈。

  题型:一般分为证明和计算(包括通项公式、求和、比较大小),解题思路:

  证明:就是要求我们证明一个数列是等比数列后还是等差数列,这种题的做法有两种,一种是用,或者,我们就可以证明其为一个等差数列或者等比数列。另一种方法就是应用等差中项或者等比中项来证明数列。计算(通项公式):一般这个题都还是比较简单的,这类型的题,我只要求大家能掌握其中题目表达式的关键字眼(如出现要用什么方法,如果出现要用什么方法,如果出现如果出现),我相信通项公式对大家来说应该是达到驾轻就熟的地步了,希望大家能把握这么容易的分数。

  求和:这种题对文科生来说,应该知道我要说什么了吧,王福叉数列(等比等差数列)呀!!,三个步骤:乘公比,错位相减,化系数为一。光是记住步骤没有用的,同时我也希望同学们不要眼高手低,不要以为很简单的,其实真正能算正确的不一定那么容易的`,所以我还是希望大家多加练习,亲自操作一下。对理科生来说,也要注意这样的数列求和,同时还要掌握一种数列求和,就是这个数列求和是将其中的一个等差或等比数列按照一定的顺序抽调了一部分数列,然后构成一个新的数列求和,还有就是要注意了如果题目里面涉及到这个的时候,一定要记住数列相互奇偶性的讨论了,非常的重要哈。

  比较大小:这种题目我对大家的要求很低,因为一般都是放缩法的问题,我也不是要求大家非要怎么样怎么样的,对这类问题需要我们的基本功底很深,要学会适当的放大和放小的问题,对这个问题的把握,需要大家对一些经常遇到的放缩公式印在脑海里面。

  补充:在不是导数的其他大题中,如果遇到求最值的问题,一般有两种方法求解,一种是二次函数求最值,一种就是基本不等式求最值。

  高一数学解题的技巧介绍 篇6

  1、“内紧外松”,集中注意,消除焦虑怯场

  集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

  2、沉着应战,确保旗开得胜,以利振奋精神

  良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

  3、寻求中间环节,挖掘隐含条件:

  在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。

  因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

  高一数学解题的技巧介绍 篇7

  一、 数学解题方法

  (1) 选择题、填空题

  选择题、填空题通称为小题,解答小题的原则为小题不大做,即用各种技巧解答问题,常用方法如下。

  做小题有以下几种基本方法:

  1 回忆法。直接从记忆中取要选择的内容。

  2 直接解答法。多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。

  3 淘汰法。把选项中错误中答案排除,余下的便是正确答案。

  4 猜测法。5 数形结合法。6 特殊值法。

  (2)解答题

  解答题属于大题,要写出必要的解题过程与步骤,阅卷时,按步骤给分。常用类型方法如下:

  1配方法 通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2 因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

  3 换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

  4 判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

  5 待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

  6 构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

  7 反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

  8 面(体)积法平面(立体)几何中讲的面(体)积公式以及由面(体)积公式推出的与面(体)积计算有关的性质定理,不仅可用于计算面(体)积,而且用它来证明平面(立体)几何题有时会收到事半功倍的效果。运用面(体)积关系来证明或计算平面几何题的方法,称为面(体)积方法,它是几何中的一种常用方法。面(体)积法的特点是把已知和未知各量用面(体)积公式联系起来,通过运算达到求证的结果。所以用面(体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

  9 几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:(1)平移;(2)旋转;(3)对称。

  二、考场上解题策略

  数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,在考试时应处理好以下几个关系。

  1、快与准的关系

  在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

  2、审题与解题的关系

  有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如至少,0,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。

  3、会做与得分的关系

  要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现会而不对对而不全的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的跳步,使很多人丢失1/3以上得分,代数论证中以图代证,尽管解题思路正确甚至很巧妙,但是由于不善于把图形语言准确地转译为文字语言,得分少得可怜;对于许多看似简单的题目,许多考生心中有数却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,会做的题才能得分。

  4、难题与容易题的关系

  拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是由易到难的顺序,因此在答题时要合理安排时间,不要在某个卡住的题上打持久战,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从一题把关转为多题把关,因此解答题都设置了层次分明的台阶,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有咬手的关卡,看似难做的题也有可得分之处。所以考试中看到容易题不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

  高一数学解题的技巧介绍 篇8

  一.基础篇之突破公式概念及图形

  高中数学考试中涉及的公式概念图形不完全是课本中涉及的,有相当一部分内容需要通过做题不断的补充总结,那么概念公式怎么学习呢?

  1.概念的学习:注重概念的内含和外延的把握(如奇偶函数等),对于抽象的概念尽可能用自己的语言理解(如极值等),同时注意概念的相似,关联,正反对比。

  2.公式的归纳学习:熟记课本公式,并在运用中简化公式以及归纳推导新公式

  3.图形的学习;掌握基本图形以及基本图形的扩展图形。

  二.基础篇之突破运算

  运算的重要性不用我多说,运算怎么提高呢?

  1.归纳图形运算。

  2.归纳各类方程和不定方法计算如指对数方程,三角方程,根式方程等。

  3.掌握特殊式子变形处理以及一般的式子处理思路如分式,根式等处理策略。

  4.在平时计算时归纳容易忽视的细节运算以及一些快速特殊计算方法。

  三.解题篇之选择题

  选择题从四个方面进行归纳学习:

  1.快速计算策略

  2选项特征.

  3题目信息暗示及一般处理方法如涉及抽象问题我们该怎样处理呢,遇到图形又怎样处理呢等

  4.选择题中的一些特殊结论公式等的归纳

【高一数学解题的技巧介绍(通用8篇)】相关文章:

高考文科数学解题技巧08-25

高考数学快速解题技巧08-25

高考数学函数解题技巧08-25

高考数学导数解题技巧08-25

考研数学复习阶段的解题技巧12-07

考研数学冲刺必备的解题技巧12-11

高考数学试题的解题技巧09-14

GMAT数学的经典题目解题技巧10-24

中考数学选择题的解题方法与解题技巧08-14

高考数学压轴题解题技巧06-07