高等数学的基础学习方法
在日常学习、工作或生活中,我们每个人都需要不断地学习,掌握一定的学习方法,学习效率就会提高很多。下面小编为大家带来高等数学的基础学习方法,希望大家喜欢!
高等数学的基础学习方法1
在学习本课程时要按照教学进度,先自学文字主教材,掌握基本内容和方法,找出疑难点。然后上网根据需要学习相关的部分的内容,包括网上的VOD资源、IP课件、教学文件和教学辅导、也可以在课程论坛中提问设疑,寻求老师和同学的帮助。可以向主讲教师、主持教师发电子邮件等,争取尽快解决疑难问题。再下网做形成性作业。教学内容基本掌握后,最后做网上的综合练习,如果未达到教学要求,则返回本章节的起点重新组织学习;如果达到教学要求,可进行下一章节的学习。
在学习本课程的过程中要注意把握以下几点:
1.基本概念要清楚
高等数学基础课程中,几乎每一章都有一些概念需要弄清楚、理解确切并且记住。一般地,首先弄清这个概念是怎样提出来的,它的背景是什么?然后记住这个概念的确切内容,它与其他内容的内在的联系,最后掌握一些例子来帮助理解抽象的概念,这样就比较直观,形象。
2.基本公式要牢记
所有基本公式都应该把它们记住,就是指在对有关概念的理解的基础上,通过逐步推导和反复运用将公式记住,公式的记忆还要讲究方法,注意总结规律。
3.反复学习勤思考
通过反复学习来真正掌握有关的基本内容,需要经过由厚变薄和由薄变厚的两个学习过程。勤于思考,对于掌握知识,将会有一个很大的提高。
4.独立作业善总结
学习数学仅仅满足于能够把书看懂,公式和定理记住,而自己不去动手做题,那是学不好数学的。独立完成作业是学习的重要手段。学时所限,本课程的理论推证和例题都比较少,必须通过做数学作业来加深对基本概念的理解,熟悉公式的运用,掌握基本解题方法,从而达到掌握知识、提高能力的目的。通过做作业,才能学到一些具体的方法,做完作业后,注意小结,养成做读书笔记的好习惯,看看这样一类问题应当如何入手,想想通过做这几个题目有那些收获,学到什么方法,使自己分析问题和解决实际问题的能力逐步提高。
5.全面复习保重点
期末考核的内容不仅仅是考核重点内容,建议学员依据期末考核说明,全面复习,突出重点,解决难点,注意总结各章节内容之间的内在联系,这样才能取得较好的复习效果,并在考试中取得较好的成绩。
总之,本课程的学习要以文字教材为主,网上教学资源为强化,小组学习、协作学习为补充,集中面授答疑辅导为突破口,利用多种手段促进学习。按照这种方式学习效果一定会比较明显的,预祝大家顺利完成本课程的学习。
高等数学的基础学习方法2
一、基本概念搞懂
所谓把基本概念搞懂,我想是不是应该从以下几个方面来理解和把握。第一个是这个概念产生的实际背景是什么。然后,定义这个概念所运用到的数学思想和方法是什么。接下来这个概念的定义式,它的数学含义,几何意义和物理意义以及在这个概念上的拓展和延伸等等。对于每个概念我们都要尽可能的从这几个方面来理解把握。把概念学懂了,这是学懂数学的至关重要的一步。
二、基本理论搞透
这包含三个方面的内容。第一所谓理论性的内容,定理、性质、推论,你首先要清楚它的条件是什么,结论是什么,这是最起码的要求。然后这些定理、性质、条件它的性质和条件要搞清楚,比如说是充分必要的还是充分必要的。我结合07年的考题给大家说。07年数学二第7个选择题,同学可以回去对照题目看。它是考察二元函数在某一点处可微的一个充分条件。你在学习的时候,你刚开始学高等数学的时候,老师都讲,二元函数在某一点处可微的充分条件是一阶偏导连续。
再比如数学一三四考的第十道选择题,是写边缘概率密度是哪个。告诉你一个二维正态分布。我们在辅导的时候告诉同学,我还总结了一条文登语录,你见到了这个,你第一要想到二维正态分布的边缘分布是正态分布,第二个是边缘现象的任意组合仍然是正态分布,第三个是两个随机变量的不相关和独立是充分必要的,也就是等价的。在这样的情况下,你知道了这些就可以做出正确的选择,所以说基本的理论要搞透,首先搞清楚它的条件和结论,这个条件是充分必要的还是充分的,必须要搞清楚。
基本理论的第二个方面就是要尽可能的从几何和数值的角度来理解这些抽象的理论。反映到今年的考题上,比如说一二三四都用到的一个选择题,基本象限函数这道题,F3、F负2、F2哪个选项正确的问题,如果你的基本的理论搞清楚了,只需要算一个F2就可以了。
基本理论搞透的第三个方面是要注意搞清楚相关理论间的有机联系。这一点,在线性代数这门课中更加的突出。在今年的考题中问你两个矩阵的关系是合同还是相似,我们对这些理论和概念,你如果比较熟练和清楚的话,你就知道找什么东西。我们在讲课的时候说,相似有四等,你一看这两个不相等,肯定不相似,必要条件有一个不满足,肯定是不相似的。合同,你需要找两个矩阵的特征值的,正的特征值和负的特征值的个数,这是要搞清楚基本理论第三个方面,相关理论的有机联系。
高等数学的基础学习方法3
要具备牢固扎实的基础知识
数学最需要强调的是基础而不是技巧。很多同学不重视基础的学习,反而只是忙着做题,做难题,就想通过题海战术取胜,这是不行的,选择辅导班一定不要选择一味追求技巧的,可以上有命题组老师的辅导班,从而能够准确把握命题思路,不至于走偏了方向。
善于归纳,学会总结,使知识条理化系统化
善于总结也是我要十分强调的一点。因为很多同学做题的过程就到对过答案或是纠正过错误就简单的结束了,一套题的价值也就到此为止了。大家在纠正完错误之后,再把这套试题从头看一遍,总结一下自己都在哪些方面出错了,原因是什么,这套题中有没有出现我不知道的新的方法、思路,新推导出的定理、公式等,并把这些有用的知识全都写到你的笔记本上,以便随时查看和重点记忆。对于大题的解题方法,要仔细想一想,都涉及到哪些科目和章节了,这些知识点之间有哪些联系等,从而使自己所掌握的知识系统化,以达到融会贯通。只有这样,才能使你做过的题目实现其的价值,也才算是你真正做懂了一套题。如果你能够这样做了,那么做过的题在以后的复习中如果没有时间了,就不用再拿出来重新看了,因为你已经把要掌握的精华总结好了,只需看你的笔记本就行了。解数学题一定要从思路,原理的角度入手。
要勤于思考,多动脑子
很多同学学数学就喜欢看例题,看别人做好的题目,分析别人总结好的解题方法、步骤。只这样是远远不够的。只是一味的被动的接受别人的东西,就永远也变不成自己的东西。第一遍复习可以只看题,但以后就必须自己试着做了,先不看答案,完全通过自己的能力做着试试,不管能做到什么程度,起码你自己先思考了,只有启动自己的大脑,才会使知识更深入的得到理解和掌握,才能真正成为自己的知识,也才会具有独立的解题能力。在做题时不要太轻易的选择放弃,想一会儿没有思路就去看答案,一定要仔细开动脑筋想过之后,实在不行再求助于外力。
高等数学的基础学习方法4
“概率论与数理统计”是理工科大学生的一门必修课程,由于该学科与生活实践和科学试验有着紧密的`联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的。
“概率论与数理统计”的学习应注重的是概念的理解,而这正是广大学生所疏忽的,在复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚。对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件。如函数y=f(x),当x确定后y有确定的值与之对应。而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错。由于基本概念没有搞懂,即使是十分简单的题目也难以得分。从而造成低分多的现象。另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算。因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因。
根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果。下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议。
学习“概率论”要注意以下几个要点
在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。此外若对一切实数集合B,知道P(X∈B)。那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。就对随机试验进行了全面的刻画。它的研究成了概率论的研究中心课题。故而随机变量的引入是概率论发展历史中的一个重要里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。
高等数学的基础学习方法5
1,逐步树立信心。高数(工专)对以前的基础要求很少,三角公式在教材里就可查到。所以,像我一样,从“0”开始,一样可以过高数。
2,迈出重要的、关键的、决定性的第一步。多花些时间,着重先学透前三章,选做一些练习;第三章的“导数”,是后继内容“微分”、“积分”、“二重积分”的基础,也可以举一反三。学完了“导数”,自己能计算题目了,就会信心倍增。
3,紧扣大纲,但又要区分主次;可先适当跳过应用难题和难点。学习每一章之前,都要先看大纲;我分别用4种符号,在教材的各节中标记出大纲的4种要求,这样就一目了然。另外,有些大纲的要求是“简单应用”、“综合应用”,比如“二次方程”等,但以往的试卷中并没有出题,可以缩减学习时间。我始终都没仔细学“微分学应用”这一章(注意会出题目),这样可以节省时间和精力。
4,把“例题”,当成“习题”,自己先做一遍,可以事半功倍。因为当你看到例题时,已经看过了相关的教材内容。有的人看书确实很认真,但不重视通过做习题来逆向检验和加深记忆,考试效果比较差。
看了教材,会做题目了,这样还不行;像“导数”、“积分”这些最基本、也是最重要的章节,要能够非常熟练的解题;所以,只有通过大量的习题,才能达到熟练的程序。往后学习才会觉得更容易,更有感觉。
5,通过以往试卷真题的练习,是复习和检验的重要环节。高数需要多些时间,不能像有些公共政治课程一样临时抱佛脚。
高等数学的基础学习方法6
要对计算引起足够的重视。很多同学总以为计算式题比分析应用题容易得多,对一些法则、定律等知识学得比较扎实,计算是件轻而易举的事情,因而在计算时或过于自信,或注意力不能集中,结果错误百出。其实,计算正确并不是一件很容易的事。例如计算一道像37×54这样简单的式题,要用到乘法、加法的运算法则,经过四次表内乘法和四次一位数加法才能完成。至于计算一道分数、小数四则混合运算式题,需要用到运算顺序、运算定律和四则运算的法则等大量的知识,经过数十次基本计算。在这个复杂的过程中,稍有粗心大意就会使全题计算错误。因此,计算时来不得半点马虎。
要按照计算的一般顺序进行。首先,弄清题意,看看有没有简单方法、得数保留几位小数等特别要求;其次,观察题目特点,看看几步运算,有无简便算法;再次,确定运算顺序。在此基础上利用有关法则、定律进行计算(高年级动笔计算前要转化数的形式,如带分数化成假分数,小数与分数互化等)。最后,要仔细检查,看有无错抄、漏抄、算错现象。
要养成认真演算的好习惯。有些同学由于演算不认真而出现错误。
①数据写不清,辨认失误。如0与6、3与8、4与9、7与1等容易认错。
②打草稿时不能按照一定的顺序排列竖式,出现上下粘连,左右不分,再加上相同数位不对齐,既不便于检查,又极易看错数据。所以一定要养成有序排列竖式,认真书写数字的良好习惯。
高等数学的基础学习方法7
1.提前预习
提前预习能够对老师上课所讲的内容有大体上的了解和把握,能够在听课的时候抓住重点,着重听取自己不会的重难点。但高数书比较晦涩难懂,如果仅仅是靠自学,往往很难看下去也比较难学进去,所以把握课堂很重要,上课需要跟着老师的'节奏走。
2.认真听课
大学固定教室的概念较弱,所以上课的地点和座位都是流动的,上课基本在比较大的阶梯教室进行。教室空间比较大,建议大家坐得靠前一些,这能更加清晰地听见老师的讲课,方便和老师进行互动,同时也能使自己集中注意力,避免因分神而错过知识点。
3.及时复习
高数很多知识都是连在一起的,需要我们经常把学过的知识复习、总结,这样才能融会贯通。当然,有些学生对复习没有足够的耐心,但也得坚持每天复习前一堂课所学的内容。复习也得专心,一定要质量高、效率高、不拖拉。
4.融会贯通
高数的知识是一层层推进的,后一章知识与前一章紧密相连,这就需要同学们稳扎稳打,一步一步地学习,掌握重点知识,千万不能为了赶进度而囫囵吞枣般学习,这样不仅不能串联知识,还会打乱学习节奏,增加学习难度。
高等数学的基础学习方法8
一、摒弃中学的学习方法,尽快适应环境
一个高中生升入大学学习后,不仅要在环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。
从中学升入大学学习后,在学习方法上将会遇到一个比较大的转折。首先是对大学的教学方式和方法会感到很不适应。这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性较强的基础理论课程。而学生正是习惯于模仿性和单一性的学习方法。这是从小学到中学的教育中长期养成的,一时还难以改变。
中学的教学方式和方法与大学有质的差别,中学的学习学生是在教师的直接指导下进行模仿和单一性的学习,大学则是在教师的指导下进行创造性的学习。而大学高等数学课程的学习,教材仅是作为一种主要的参考书,要求学生以课堂上老师所讲的重点和难点为线索,课后去钻研教材和阅读大量的同类参考书,然后去完成课后习题。就这样反复地进行创造性学习。这是一种艰苦的脑力劳动,需要学生能反复地、自觉地进行学习。还要在松散的环境中能约束自己。
大学生活是人生的一大转折点。大学时期注重于培养同学们的独立生活、独立思考、独立分析问题和解决问题的能力,而不像中学那样有一个依赖的环境。高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等;从形式上讲,学习方式也很不一样,特别是一般都是大班授课,进度快,老师很难个别辅导,故对自学能力的要求很高。中学时期主要是老师领着学,学生只需要跟着老师的指挥棒走就可以了,而在大学时主要靠自学,教师只起一个引导的作用。新同学应尽快适应大学生活,形成一个良好的开端,这对四年的大学生涯是有益的。
二.注意中学数学和《高等数学》的区别与联系
中学数学课程的中心是从具体数学到概念化数学的转变。中学数学课程的宗旨是为大学微积分作准备。学习数学总要经历由具体到抽象、由特殊到一般的渐进过程。由数引导到符号,即变量的名称;由符号间的关系引导到函数,即符号所代表的对象之间的关系。高等数学首先要做的是帮助学生发展函数概念——变量间关系的表述方式。这就把同学们的理解力从常量推进到变量、从描述推进到证明、从具体情形推进到一般方程,开始领会到数学符号的威力。但《高等数学》的主要内容是微积分,它继承了中学的训练,它们之间有千丝万缕的联系。
三.尽快适应《高等数学》课程的教学特点
为了适应21世纪高等数学课程的教学改革,高等数学课程的教学也发生了很大的变化,在传统的教学手段的基础上,采用了更加具体化、形象化的现代教育技术,这也是一般中学所没有的,因此,同学们在进入大学以后,不仅要注意高等数学课程的内容与中学数学的区别与联系,还要尽快适应高等数学课程的新的教学特点。认真上好第一节高等数学课,严格按照任课老师的要求去做。若能坚持做到,课前预习,课上听讲,课后复习,认真完成作业,课后对所学的知识进行归纳总结,加深对所学内容的理解,从而也就掌握了所学的知识,就不难学好高等数学这门课。有些同学就是没有把握好自己,一看高等数学一开始的内容和中学所学内容极其相似,就掉以轻心,认为自己看看就会了,要么不听课,要么不完成作业,结果导致后面的章节听不懂,跟不上,甚至有的同学就一直跟不上,学期末成绩不理想,甚至不及格。
【高等数学的基础学习方法】相关文章:
高等数学的学习方法09-30
高等数学高效的学习方法09-21
高等数学基础知识复习规划08-24
考研高等数学基础阶段复习建议11-08
Java基础学习方法09-07
零基础英语学习方法总结04-05
高中语文基础知识学习方法07-22
零基础英语学习方法总结指导04-04
零基础C语言学习方法09-17