数学 百文网手机站

常用的数学思想方法

时间:2022-01-26 19:49:46 数学 我要投稿

常用的数学思想方法大全

  在数学的学习过程中,有哪些常见的思想方法呢?下面是小编网络整理的常见的数学思想方法以供大家学习。

常用的数学思想方法大全

  常用的数学思想方法 篇1

  1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9、演绎法:由一般到特殊的推理方法。

  10、归纳法:由一般到特殊的推理方法。

  11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。

  常用的数学思想方法 篇2

  数学方法是数学思想的具体化形式,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。实质上两者的本质是相同的,差别只是站在不同的角度看问题,通常混称为思想方法。数学思想方法的自觉运用会使我们运算简洁、推理机敏,是提高数学能力的必由之路。常见的数学思想方法有:数形结合方法、对应思想方法、转化思想方法、猜想验证思想方法等。下面就以自己的教学实践为例谈谈在实际教学中渗透这些数学思想方法的一些粗浅做法。

  一、数形结合的思想方法

  数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

  在小学一年级刚开始学习数的认识时,都是以实物进行引入,再从中学习数字的实际含义。例如学习“6的认识”时,先出示主题图,问学生图中有些什么?学生从中数出6朵小花,6只小鸟,6个气球。从而感知5的某些具体意义。再从实物中慢慢抽象成某一特定物体,利用学生的学具小棒摆出由6根小棒组成的任何图形,从而让学生在动手的过程中,不仅表现出自己的独特创意,而且更深一层地理解6的实际意义;第三层次是利用黑板进行画6个圆,6个正方形,6个三角形等特定图形来代表6,从而慢慢抽象至数字6。这样从实物至图形,在抽象到数字,整个过程应该符合一年级小学生的特点,也是数形结合思想的一种渗透。

  二、对应思想方法

  利用数量间的对应关系来思考数学问题,就是对应思想。寻找数量之间的对应关系,也是解答应用题的一种重要的思维方式。

  在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。

  例如:水果店上午卖出苹果6筐,下午又卖出同样的苹果8筐,比上午多卖100元,每筐苹果多少元? 这里存在着钱数和筐数的对应关系,学生如果能看出下午比上午多卖的100元对应的筐数是(8-6)筐,此题就迎刃而解了,即100÷(8-6)=50(元)。

  此外,在教学归一问题、相遇问题时,都要让学生找到题中数量之间的对应关系。解决问题对于小学生是个抽象的问题,特别对于低、中年级学生更难理解。但找到了对应关系,也就找到了解题的关键。

  三、转化思想方法

  转化就是在研究和解决有关数学问题时,采用某种手段将一个问题转化成为另外一个问题来解决。一般是将复杂的问题转化为简单的问题,将难解问题转化为容易求解的问题,将未解决的问题转化为已解决的问题。

  例如:上“整十、整百相加减”一课时,先让学生观察,然后问一问,能不能把整十、整百相加减化为我们以前所学过的几加几,几减几,这样学生不仅很快能掌握新学得知识,还可以自己解决整百相加减。这正是再渗透转化思想的方法。

  四、猜想验证思想方法

  猜想验证是一种重要的数学思想方法,正如荷兰数学教育家弗赖登塔尔所说:“真正的数学家常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中,教师要重视猜想验证思想方法的渗透,以增强学生主动探索和获取数学知识的能力,促进学生创新能力的发展。

  例如:教“乘法分配律”一课时,我设计了以下几个环节:

  1、出示例题:(1)(6+8)×25 (2)6×25+8×25

  学生独自计算结果。

  2、讨论两个算式的异同点。

  3、根据自己的发现举出类似的例子,并加以计算。

  4、验证后,总结归律。

  这样,通过算、讨论、说、算、说,学生初步感知了乘法分配律。至此,猜想乘法分配律已是水到渠成。

  现代数学思想方法的内涵极为丰富,诸如还有集合思想、极限思想、优化思想、统计思想、等等,小学数学教学中都有所涉及。我们广大小学数学教师要做教学有心人,有意渗透,有意点拨,重视数学史的渗透,重视课堂教学小结,要以适应小学生年龄特点的大众化、生活化方式呈现教学内容,让学生通过现实活动,主动参与、自主探究,学会用数学思维方法提出问题、分析问题、解决问题,从而让学生的数学思维能力得到切实、有效地发展,进而提高全民族的数学文化素养。在小学数学中,数学思想方法给出了解决问题的方向,给出了解决问题的策略。这就需要教师挖掘、提炼隐含于教材的思想方法,纳入到教学目标。有目的、有计划、有步骤地精心设计教学过程,有效地渗透数学思想方法。

  常用的数学思想方法 篇3

  一、模糊数学产生的背景

  模糊数学是在特定的历史背景中产生的,它是数学适应现代科学技术需要的产物。

  首先,现实世界中存在着大量模糊的量,对这类量的描述和研究需要一种新的数学工具。我们知道,现实世界中的量是多种多样的,如果按着界限是否分明,可把这无限多样的量分为两类:一类是明晰的,另一类是模糊的。实践表明,在自然界、生产、科学技术以及生活中,模糊的量是普遍存在的。例如“高压”、“低温”、“偏上”、“适度”、“附近”、“美丽”、“温和”、“老年”、“健康”等等。这些概念作为现实世界事物和现象的状态反映,在量上是没有明晰界限的。

  模糊数学产生之前的数学,只能精确地描述和研究那些界限分明的量,即明晰的量,把它们用于描述和研究模糊的量就失效了。对那些模糊的量,只有用一种“模糊”的方法去描述和处理,才能使结果符合实际。因此,随着社会实践的深化和科学技术的发展,对“模糊”数学方法进行研究也就成为十分必要的了。

  其次,电子计算机的发展为模糊数学的诞生准备了摇篮。自本世纪40年代电子计算机问世以来,电子计算机在生产、科学技术各领域的应用日益广泛。电子计算机发展的一个重要方向是模拟人脑的思维,以便能处理生物系统、航天系统以及各种复杂的社会系统。而人脑本身就是一种极其复杂的系统。人脑中的思维活动之所以具有高度的灵活性,能够应付复杂多变的环境,一个重要原因是逻辑思维和非逻辑思维同时在起作用。一般说来,逻辑思维活动可用明晰数学来描述和刻画,而非逻辑思维活动却具有很大的模糊性,无法用明晰数学来描述和刻划。因此,以二值逻辑为理论基础的电子计算机,也就无法真实地模拟人脑的思维活动,自然也就不具备人脑处理复杂问题的能力。这对电子计算机特别是人工智能的发展,无疑是一个极大的障碍。为了把人的自然语言算法化并编入程序,让电子计算机能够描述和处理那些具有模糊量的事物,从而完成更为复杂的工作,就必须建立起一种能够描述和处理模糊的量及其关系的数学理论。这就是模糊数学产生的直接背景。

  模糊数学的创立者是美国加利福尼亚大学的札德教授。为了改进和提高电子计算机的功能,他认真研究了传统数学的基础-集合论。他认为,要想从根本上解决电子计算机发展与数学工具局限性的矛盾,必须建立起一种新的集合理论。1965年,他发表了题为《模糊集合》的.论文,由此开拓出了模糊数学这一新的数学领域。

  二、模糊数学的理论基础

  明晰数学的理论基础是普通集合论,模糊数学的理论基础则是模糊集合论。札德也正是从模糊集合论着手,建立起模糊数学的。

  模糊集合论与普通集合论的根本区别,在于两者赖以存在的基本概念-集合的意义不同。普通集合论的基本概念是普通集合即明晰集合。对于这种集合,一个事物与它有着明确的隶属关系,要么属于这个集合,要么不属于这个集合,两者必居其一,不可模棱两可。如果用函数关系式表示,可写成

  这里的A(u)称为集合A的特征函数。特征函数的逻辑基础是二值逻辑,它是对事物“非此即彼”状态的定量描述,但不能用于刻划某些事物在中介过渡时所呈现出的“亦此亦彼”性。例如,取A为老年人集合,u为一个年龄为50岁的人,我们拿不出什么令人信服的理由来确定A(u)的值是1还是0.这正是普通集合论的局限之所在。

  与普通集合不同,模糊集合的逻辑基础是多值逻辑。对于这种集合,一个事物与它没有“属于”或“不属于”这种绝对分明的隶属关系,因而也就不能用特征函数A(u)来描述。那么,怎样才能定量地描述模糊集合的性质和特征呢?模糊集合论的创立者札德给出了隶属函数的概念,用以代替普通集合论中的特征函数概念。隶属函数的实质,是将特征函数由二值{0,1}推广到[0,1]闭区间上的任意值。通常把隶属函数表示为μ(u),它满足

  0≤μ(u)≤1(或记作μ(u)∈[0,1])

  有了隶属函数概念,就可给模糊集合下一个准确的定义了。札德在1965年的论文中给出了如下的定义:

  隶属函数的选取是一个较为复杂的问题,目前还没有一个固定和通用的模式,它依问题的不同可以有不同的表达形式。在许多情况下,它是凭借经验或统计分析确定的。

  例如,某小组有五名同学,记作u1,u2,u3,u4,u5,取论域.现在取为由“性格稳重”的同学组成的集合,显然这是一个模糊集合。为确定每个同学隶属于的程度,我们分别给每个同学的性格稳重程度打分,按百分制给分,再除以100.

  这里实际上就是求隶属函数,如果打分的结果是

  u1得85分,u2得75分,u3得98分,u4得30分,u5得60分

  那么隶属函数的值应是

  可表示为

  还可表示为

  或

  普通集合与模糊集合有着内在的联系,这可由特征函数A(u)和隶属函数的关系来分析。事实上,当隶属函数只取[0,1]闭区间的两端点值0,1时,隶属函数也就退化为特征函数A(u),从而模糊子集也就转化为普通集合A.这就表明普通集合是模糊集合的特殊情况,模糊集合是普通集合的推广,它们既相互区别,又相互联结,而且在一定条件下相互转化。正因为有此内在的联系,决定了模糊数学可以广泛地使用明晰数学的方法,从明晰数学到模糊数学存在着由此达彼的桥梁。

  模糊数学作为一门新兴的数学学科,虽然它的历史很短,但由于它是在现代科学技术迫切需要下应运而生的,因而对于它的研究,无论是基础理论还是实际应用,都得到了迅速的发展。

  就其基础理论而言,模糊数学研究的课题已涉及到广泛的范围,如模糊数、模糊关系、模糊矩阵、模糊图、模糊映射和变换、模糊概率、模糊判断、模糊规划、模糊逻辑、模糊识别和模糊控制等。

  在应用方面,模糊数学的思想与方法正在广泛渗透到科学和技术的各个领域,如物理学、化学、生物学、医学、心理学、气象学、地质学、经济学、语言学、系统论、信息论、控制论和人工智能等。同时,在工农业生产的许多部门已取得明显的社会效益。

  常用的数学思想方法 篇4

  一、集合的思想方法

  把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。

  如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。

  二、对应的思想方法

  对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

  如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。

  三、数形结合的思想方法

  数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

  例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

  四、函数的思想方法

  恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。

  函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

  五、极限的思想方法

  极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。

  现行小学教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。

  六、化归的思想方法

  化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不

  断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。

  如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。

  七、归纳的思想方法

  在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。

  如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。

  八、符号化的思想方法

  数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。

  人教版教材从一年级就开始用“□”或“”代替变量x,让学生在其中填数。例如:1+2=□,6+=8,7=□+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□○□=□(个)。

  符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。

  九、统计的思想方法

  在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法

  小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。

  常用的数学思想方法 篇5

  1、函数与方程思想

  (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用

  (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础

  高考把函数与方程思想作为七种重要思想方法重点来考查

  2、数形结合思想:

  (1)数学研究的对象是数量关系和空间形式,即数与形两个方面

  (2)在一维空间,实数与数轴上的点建立一一对应关系

  在二维空间,实数对与坐标平面上的点建立一一对应关系

  数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化

  3、分类与整合思想

  (1)分类是自然科学乃至社会科学研究中的基本逻辑方法

  (2)从具体出发,选取适当的分类标准

  (3)划分只是手段,分类研究才是目的

  (4)有分有合,先分后合,是分类整合思想的本质属性

  (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性

  4、化归与转化思想

  (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题

  (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

  (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化

  5、特殊与一般思想

  (1)通过对个例认识与研究,形成对事物的认识

  (2)由浅入深,由现象到本质、由局部到整体、由实践到理论

  (3)由特殊到一般,再由一般到特殊的反复认识过程

  (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程

  (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向

  6、有限与无限的思想:

  (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路

  (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向

  (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用

  7、或然与必然的思想:

  (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性

  (2)偶然中找必然,再用必然规律解决偶然

  (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点

  常用的数学思想方法 篇6

  数学教学有两条线,一条是明线即数学知识的教学,一条是暗线即数学思想方法的教学。而数学思想方法是数学的精髓,是学生形成良好认知结构的纽带,是知识转化为能力的桥梁,是培养学生良好的数学观念和创新思维的载体,在教学中我们必须重视数学思想方法的渗透教学。

  一、数学思想方法的界定

  数学思想是对数学知识、方法、规律的一种本质认识;数学方法是解决数学问题的策略和程序,是数学思想的具体反映;数学知识是数学思想方法的载体,数学思想较之于数学基础知识及常用数学方法又处于更高层次,它来源于数学基础知识及常用的数学方法,在运用数学基础知识及方法处理数学问题时,具有指导性的地位。对于学习者来说,运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种积累达到一定程度就会产生飞跃,从而上升为数学思想,一旦数学思想形成之后,便对数学方法起着指导作用。因此,人们通常将数学思想与方法看成一个整体概念——数学思想方法。

  二、初中阶段应渗透的主要数学思想方法

  在初中数学教学中至少应该向学生渗透如下几种主要的数学思想方法:

  1.分类讨论的思想方法

  分类是通过比较数学对象本质属性的相同点和差异点,然后根据某一种属性将数学对象区分为不同种类的思想方法。分类讨论既是一个重要的数学思想,又是一个重要的数学方法,能克服思维的片面性,防止漏解。

  2.类比的思想方法

  类比是根据两个或两类的对象间有部分属性相同,而推出它们某种属性也相同的推理形式,被称为最有创造性的一种思想方法。

  3.数形结合的思想方法

  数形结合的思想方法是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。

  4.化归的思想方法

  所谓“化归”就是将要解决的问题转化归结为另一个较易问题或已经解决的问题。

  5.方程与函数的思想方法

  运用方程的思想方法,就是根据问题中已知量与教学法未知量之间的数量关系,运用数学的符号语言使问题转化为解方程(组)问题。

  用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系进行刻划并加以研究,从而使问题获得解决,称为函数思想方法。

  6.整体的思想方法

  整体的思想方法就是考虑数学问题时不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观上、整体上认识问题的实质,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法。

  常用的数学思想方法 篇7

  函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题中的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还通过函数与方程的互相转化、接轨,达到解决问题的目的。函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标。

  函数是高中数学的重要内容之一,其理论和应用涉及各个方面,是贯穿整个高中数学的一条主线。这里所说的函数思想具体表现为:运用函数的有关性质,解决函数的某些问题;以运动和变化的观点分析和研究具体问题中的数学关系,通过函数的形式把这种关系表示出来并加以研究,从而使问题获得解决;对于一些从形式上看是非函数的问题,经过适当的数学变换或构造,使这一非函数的问题转化为函数的形式,并运用函数的有关概念和性质来处理这一问题,进而使原数学问题得到顺利地解决。尤其是一些方程和不等式方面的问题,可通过构造函数很好的处理。

  方程思想就是分析数学问题中的变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。尤其是对于一些从形式上看是非方程的问题,经过一定的数学变换或构造,使这一非方程的问题转化为方程的形式,并运用方程的有关性质来处理这一问题,进而使原数学问题得到解决。

【常用的数学思想方法大全】相关文章:

职高数学思想方法的培养08-29

PHP常用代码大全09-16

英语写作常用的谚语大全10-09

数学小报的图片大全05-21

数学的小报内容大全01-18

Excel常用的快捷键大全09-27

申论常用名言佳句大全12-16

PHP面试常用知识大全09-26

常用英语口语大全08-26

常用办公软件技巧大全10-04