数学的由来简介
数学本身是一个历史的概念,数学的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。我们在这里就从历史的角度来谈谈“什么是数学”这个问题。以下是小编为大家分享的数学的由来简介,欢迎借鉴!
数学:这一词在西方源自于古希腊语,其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义。古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。
数学是研究现实世界空间形式和数量关系的一门科学。它包括算术、代数、几何、三角、解析几何、微积分等等。小学数学是指算术和简易代数及几何初步知识。
数学科学伴随着人类社会的发展,也有它自身发展的历程。前苏联科学院院士A·H·柯尔莫戈洛夫曾把数学发展史划分为四个阶段:第一个阶段的前期产生自然数概念、计算方法和简单的几何图形,后期出现数的写法、数的算术运算、某些几何图形的运用,解答简单的代数题目;第二个阶段逐渐形成了初等数学的分支,即算术、代数、几何、三角;第三个阶段建立了解析几何、微积分、概率论等学科;第四个阶段出现计算机学科,以及应用数学的众多分支、纯数学的若干问题的重大突破等。
我国数学在世界数学发展史上,有它卓越的贡献。早在远古时代,人们就用绳结表示事物的多少,在彩陶中绘有大量的直线、三角、圆、方、菱形、五边形、六边形等对称图案,在房屋遗址的基地上,亦发现几何图形,表明远古的人们在一定程度上已经具有数和形的概念。
在新石器时期的彩陶钵上,有多种刻画符号,其中丨、×、+等,很可能是我国最早的记数符号。产生文字之后,在殷商的甲骨文中出现了记数的专用文字和十进制记数法,并且运用规和矩作为简单的绘图和测量工具。《前汉书·律历志》记载了用竹棍表示数和计算的方法,称为算筹和筹算。在春秋早期乘法口诀被称为“九九”歌,已经成为很普通的知识。
春秋战国时期,学术繁荣,产生了相当精彩和可贵的数学思想;公元前6世纪,已经有了关于简单体积和比例分配问题的算法,在《考工记》中记载了分数和角度的资料;到秦始皇时,统一了度量衡,并且基本上采用了十进制的度量单位,在《墨经》中提出了几何名词的定义和几何命题等。《杜忠算术》和《许商算术》是最早的数学专著,但这两部书都失传了。至今仍保留的古代数学专著是《算数书》,全书共有60多个小标题、90多个题目,书中内容涉及了整数和分数的四则运算、比例问题、面积和体积问题等、并且含有“合分”、“少广”等数学思想。
大约公元前1世纪完成了《周髀算经》(书中大部分内容于公元前7到6世纪完成),书中记述了矩的用途、勾股定理及其在测量上的应用,相似直角三角形对应边成比例的定理、开平方问题、等差级数问题,应用古“四分历”计算相当复杂的分数运算等,此书为重要的宝贵文献。
古代数学的著名著作是《九章算术》,大约成书于公元1世纪东汉初年,全书列举了246个数学问题及解决问题的方法。共有九章:第一章“方田”介绍土地面积的计算、含有正方形、矩形、三角形、梯形、圆、环等面积公式,弓形面积和球形表面积的近似公式,还有分数四则运算法则、约分、通分、求最大公约数等方法;第二章“粟米”介绍了各种粮食折算的比例问题,及解比例的方法,称为“今有术”;第三章“衰(Cuǐ)分”介绍了按等级分配物资或按一定标准摊派税收的比例分配问题、等差数列和等比数列问题等;第四章“少广”介绍了已知正方形面积或正方体体积,求边长或棱长的开平方或开立方的方法,已知球的体积求直径的问题等;第五章“商功”介绍了立体体积计算,包括长方体、棱柱、棱锥、棱台、圆柱、圆锥、圆台、楔形体等体积的计算公式;第六章“均输”介绍了计算按人口多少、物价高低、路程远近等条件,合理摊派税收、民工的正比、反比、复比例、等差级数等问题;第七章“盈不足”介绍了盈亏类问题的算法;第八章“方程”介绍了一次联立方程问题,引入了负数的概念,及正负数的加减法则;第九章“勾股”介绍了勾股定理的应用和简单的测量问题,其后,历史上著名数学家刘徽、祖冲之、李淳风、贾宪等,都曾经深入研究和注释过《九章算术》并且提出许多新的概念和新的方法。在诸如勾股定理的证明、重差术、割圆术、圆周率近似值、球的体积公式、二次和三次方程的解法。同余式和不定方程的解法等方面做出了重要的`新贡献。
我国古代数学专著有《勾股圆方图注》、《九章算术注》、《孙子算经》、《五经算术》、《缀术》等。特别应该指出的是,刘徽在《九章算术注》中对《九章算术》的大部分数学方法作了严密的论证,对于一些数学概念提出了明确的解释,为中国数学发展奠定了坚实的理论基础。祖冲之在《缀术》中得出了比刘徽所提出的值更精密的圆周率,成为举世公认的重大成就。贾宪在《黄帝九章算法细草》中提出的“开方作法本源”图和增乘开方法,以及《孙子算经》中的“孙子问题”,《张邱建算经》中的“百鸡问题”、珠算盘和珠算术等等,均在世界数学发展史上有深远影响。
拓展:中国古代数学名著简介
中国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。
例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。
开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。
从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。
《算经十书》
《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。
这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说──“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。
对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。
《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。
从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。
《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足”(也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。
《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。
《算经十书》的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名。而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的。
《缀术》是南北朝时期著名数学家祖冲之的著作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的著名工作──关于圆周率的计算(精确到第六位小数),记载在《隋书?律历志》中(参见本书第101页)。
《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了。
宋元算书
中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。
特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括:
秦九韶著的《数书九章》(公元1247年);
李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年);
杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年);
朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。
《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页)。书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多。《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页)。
宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。
宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。
宋元以后,明清时期也有很多算书。例如明代就有著名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书,但是像《算经十书》、宋元算书所包含的那样重大的成就便不多见了。特别是在明末清初以后的许多算书中,有不少是介绍西方数学的。这反映了在西方资本主义发展进入近代科学时期以后我国科学技术逐渐落后的情况,同时也反映了中国数学逐渐融合到世界数学发展总的潮流中去的一个过程。
中国数学发展的历史表明:中国数学曾经为世界数学的发展作出过卓越的贡献,只是在近代才逐渐落后了。我们深信,经过努力,中国数学一定能迎头赶上世界先进水平。
【数学的由来简介】相关文章:
数学符号由来简介02-20
清明果的由来简介03-30
座右铭的简介和历史的由来06-29
数学的由来03-28
圣诞节的由来简介及传说10-10
除夕的由来和传说故事简介02-14
中国春节的由来和风俗简介12-24
中秋节的由来简介与传说07-24
数学的由来介绍06-25