小学数学各类题的答题方法
小升初,不光是学习分数漂亮,答题技巧也是需要的,巧妙的答题技巧可以使考试效率大大的提高。答题技巧是一门学问,心理准备、答题顺序、审题方式、遇到难题时的处理等,都大有讲究。掌握这方面的技巧,充分发挥主观能动性,将记忆力、理解力、分析综合融为一体,对提高考试成绩将产生直接影响。以下是小编为大家整理的小学数学各类题的答题方法,仅供参考,希望能够帮助大家。
小学数学各类题的答题方法1
一、选择题的解法:
选择题得分关键是考生能否精确、迅速地解答。数学选择题的求解有两种思路:一是从题干出发考虑,探求结果;二是题干和选择的分支联合考虑或从选择的分支出发探求是否满足题干条件,由于答案在四个中找一个,随机分一定要拿到。选择题解题的基本原则是:"充分利用选择题的特点,小题尽量不要大做"。
二、填空题的解法:
填空题答案有着简短、明确、具体的要求,解题基本原则是小题大做别马虎,特别是解的个数和形式是否满足题意,有没有漏解和不满足题目要求的解要认真区别对待。数学填空题的分值增加许多,其得分情况对考试成绩大有影响,所以答题时要给予足够的精力和时间,填空的解法主要有:直接求解法、特例求解法、数形结合法,解题时灵活应用。
三、解答题的解法:
解答题得分的关键是考生能否对所答题目的每个问题有所取舍,一般来说在解答题中总是有一定数量的数学难题(通常在每题的后半部分和最后一、两题中),如果不能判别出什么是自己能做的题,而在不会做的题上花太多的时间和精力,得分肯定不会高。解答题解题时要注意:书写规范,各式各样的题型有各自不同的书写要求,答题的形式对了基本分也就得到了。审题清晰,题读懂了解题才能得到分,要快速在短时间内审清题意,知道题目表达的意思,题目要解决的是什么问题,关键的字词是什么,特殊的情形有没有,不能一知半解,做了一半才发现漏了条件推翻重来,费了精力影响情绪。
附加题一般有2至3问,第一问,其实不难,你要有信心做出来,一般也就是个简单的理论的应用,不会刁难你,所以,你要作出来。如果有第三问,那么第二问多半是中继作用,就是利用第一问的结论,然后第三问有要用到它自己。这一问,比较难一点,但是,如果你时间允许,还是可以做出来的。
解答题中,由于是按步给分,应特别注意过程步骤的严谨和规范,追求"表达的准确、考虑的周密、书写的规范、语言的科学",写清得分点,清楚地呈现自己的思维层次。否则会做的题目若不注意准确表达和规范书写,常常会被"分段扣分",适当的文字说明,不能只列几个式子或单纯的结论。解答题应注意"大题小做,大题细作"。另外,注意 "快慢结合,合理把握时间"。慢主要体现在审题方面,看题要清,审题要透彻,合理方面脚步,防止错看,漏看,从一定义上说:"成在审题,败在审题"。快主要是解答要快速准确,一步到位,尽量减少反工检查的时间。总体时间的把握上,在保证选填的基础上,要留出充分的时间放在解答题上,保证充分的思维时空,另外还应预留时间对把握不足的题目进行复查。
小学数学各类题的答题方法2
巧设条件
有些题数量关系抽象,猛一看去甚至觉得条件“不充分”。若把题变为“看得见,摸得着”,则易为学生理解接受。
例1 制造某种机器零件的时间甲比乙少用1/4,那么,甲比乙的工作效率高( )%.
若假设乙加工这种零件要8小时(是4的倍数计算方便),那么,甲加工
如果设乙加工这种零件要4分钟,那么,他每小时加工15个;甲用的时间比乙少1/4,只需要3分钟,他每小时能加工20个。这样,就更简捷了。
(20—15)÷15≈33.3%.
设正方形的边长为6个长度单位(6是2和3的最小公倍数),则
例3 甲数比乙数多25%,乙数比甲数少( )%.
数少
例4 一组题。
(1)一个正方形体的棱长扩大2倍,那么它的体积就扩大( )倍,表面积扩大( )倍。
假设原正方体的棱长为1个单位长度,其体积为1×1×1,表面积为1×1×6;扩大后的棱长为2,体积为23、表面积为22×6。再通过比较就可得出结果。
(2)大圆半径是小圆半径的3倍,大圆周长是小圆周长的( )倍,小圆
假定小圆半径为1,则大圆半径为3。
与小圆面积的比是( )。
假设阴影部分的面积为6,代入计算比直接利用两个“分率”推导易理解。
求小明比小方高多少,就是求168cm的1/6+1,即高出24cm.
小学数学各类题的答题方法3
逻辑推理
例1 从代号为A、B、C、D、E、F六名刑警中挑选若干人执行任务。人选配备要求:
(1)A、B两人中至少去1人;
(2)A、D不能一起去;
(3)A、E、F三人中派2人去;
(4)B、C两人都去或都不去;
(5)C、D两人中去1人;
(6)若D不去,则E也不去。
应派谁去?为什么?
可这样思考:由条件(1),
假设A去B不去,由(2)知D不去,由(5)知C一定去。这样,则与条件(4)B、C两人都去或都不去矛盾。
假设A、B都去,由(2)知D不去,由(5)知C一定去,由(6)知E不去,由(3)知F一定去。无矛盾,(4)也符合。
故应由A、B、C、F四人去。
例2 河边有四只船,一个船夫,每只船上标有该船到达对岸所需的时间。如果船夫一次划两只船过河,按花费时间多的那只船计算,全部划到对岸至少要用几分钟?
至少要用2+1+10+2+2=17(分钟)
例3甲、乙、丙三人和三只熊A、B、C同时来到一条河的南岸,都要到北岸去。现在只有一条船,船上只能载两个人或两只熊或一个人加一只熊,不管什么情况,只要熊比人数多,熊就会把人吃掉。人中只有甲,熊中只有A会划船,问怎样才能安全渡河?
这里只给出一种推理方法:
枚举法
把问题分为既不重复,也不遗漏的有限种情况,一一列举问题的解答,最后达到解决整个问题的目的。
例4 公社每个村准备安装自动电话。负责电话编码的雅琴师傅只用了1、2、3三个数字,排列了所有不相同的三位数作电话号码,每个村刚好一个,这个公社有多少个村?
运用枚举法可以很快地排出如下27个电话号码:
所以该公社有 27(3×9)个村。
例5 国小学数学奥林匹克,第二次(1980年12月)3题:一个盒中装有7枚硬币:2枚1分的,2枚5分的,2枚10分的,1枚25分的。每次取出两枚,记下它们的.和,然后放回盒中,如此反复。那么记下的和至多有多少种不同的数?
枚举出两枚硬币搭配的所有情况
共有9种可能的和。
小学数学各类题的答题方法4
巧试商
(1)定位打点
首先用打点的方法定出商的最高位。
其次用除数的最高位去除被除数的前一位(如果被除数的前一位不够,就除被除数的前两位)。
最后换位调商。试商后,如果除数和商相乘的积比被除数大时,将试商减1;小时,且余数比除数大,将试商加1.例略。
(2)比积法
就是在求得商的最高位后,以后试商时,把被除数和已得的商与除数之积比较,从而确定该位上的商。常可一次试商获得成功,从而提高解题速度,还可培养学生的比较判断能力。
例如,9072÷252=36.
十位上商3,得积756.在个位上试商时,只要把1512与756相比较,便知1512是756的2倍,故商的个位应是3的2倍6.特别是当商中有相同数字时,更方便。
本题在个位上试商时,只要把1268与1256相比较,便知应为8,且很快写出积1256,从而得到余数12.
(3)四舍五入法
除数是两、三位数的除法。根据除数“四舍五入”的试商方法,常需调商。若改为“四舍一般要减一,五入一般要加一”,常可一次定商。
例如,175÷24,除数24看作20,被除数175,初商得8,直接写商7.
2299÷382,382可看作400,上商5,积是2000.接近2299,但结果商还是小,可直接写商6.
(4)三段试商法
把两位数的除数的个位数1—9九个数字,分为“1、2、3”、“4、5、6”、“7、8、9”三段来处理。
当除数的个位数是1、2、3时,用去尾法试商(把1、2、3舍去)。
商。
当除数个位数是4、5、6时,先用进一法试商,再用去尾法试商,然
商为8,取6—8之间的“7”为准确商。如果两次初
是初商6、7中的“6”.
(5)高位试低位调
用除数最高位上的数去估商,再用较低位上的数调整商。例如:513÷73=7的试商调商过程如下。
A.用除数十位上的7去除被除数的前两位数51,初商为7;
B.用除数个位上的3调商:从513中 去减7与70的积490,余23,23比初商7 与除数个位数3的积21大,故初商准确,为7.
如果283÷46时,用除数高位上的4去除28,初商为7,用除数个位6调商,从283中减去7与40的积余3,3比7与除数个位数6的积42小,初商则过大。调为6.
这种试商方法简便迅速,初商出得快,由于“低位调”,准确商也找得准。同时,由于用除数最高位上的数去估商时,初商只存在过大的情况,调整初商时只需要调小,这样,调商也较快。
但是,有时在采用这种方法试商时,初商与准确商仍存在着差距过大的
调商,从181中减去6与30的积,余1,1比6与7的积小,照理应将初商调为5,因为1比42小41,而41>37,为了减少调商次数,直接将初商调为“4”,称为“跳调”。这样便于较快地找出准确商。
(6)靠五法
对除数不大接近于整十数、整百数的,如9424÷152,不论用舍法或者入法,都要两次调商。如果我们把除数152看作150,即不是用四舍五入法,而是向五靠,一般能减少试商次数,甚至可以一次定商。
(7)同头无除
当被除数和除数的最高位数字相同,而被除数的次高位数字又比除数次高位数字小的,例如3368÷354=9……,1456÷182=8,一般的就用“同头无除商8、9”.
(8)半除
被除数的前一位或两位数正好是除数前两位数的一半或接近一半的,例如965÷193=5,1305÷261=5,一般用“半除商5”.
(9)一次定商法
对确定每一位商,分四步进行:
第一步,用5作基商,先求出除数的5倍是多少;
第二步,求差数,即求出被除到的数与除数的5倍的差数;
第三步,求差商,差数÷除数=“差商”;
第四步,定商,若差数>0,当差商是几,定商为“5+几”,若差数<0,当差商是几,定商为“5-几”。
例如:517998÷678=764……6
(1)先从高位算起,定第一位商7.
先求除数的5倍:678×5=3390求差商(5179-3390)÷678=2……;
定商 5+2=7;
(2)定第二位商6.
差商(4339-3390)÷678=1……
定商 5+1=6;
(3)定第三位商4.
被除数与除数5倍的差小于0,差商不足1,
定商5-1=4,即2718÷678的商定为4.
对于上述一次定商法,在定商的过程中,如果被除到的数是除数的1倍或2倍,可以直接定商,不必拘泥于上面四步。
小学数学各类题的答题方法5
巧化归
将某一问题化归为另一问题,将某些已知条件或数量关系化归为另外的条件或关系,变难为易,变复杂为简单。
例1 甲乙两工程队分段修筑一条公路,甲每天修12米,乙每天修10米。如果乙队先修2天,然后两队一起修筑,问几天后甲队比乙队多修筑10米?
此题具有与追及问题类似的数量关系:甲每天修筑12米,相当于甲的“速度”;乙每天修筑10米,相当于乙的“速度”,乙队先修2天,就是乙先修10×2=20(米),又要甲比乙多修10米,相当于追及“距离”是20+10=30(米)。
由此可用追及问题的思维方法解答,即
追及“距离”÷“速度”差=追及时间
↓ ↓ ↓
(10×2+10)÷(12-10)=15(天)
例2 大厅里有两种灯,一种是上面1个大灯球下缀2个小灯球,另一种是上面1个大灯球下缀4个小灯球,大灯球共360个,小灯球共有1200个。问大厅里两种灯各有多少盏?
本题若按一般思路解答起来比较困难,若归为“鸡兔问题”解答则简便易懂。
把1个大灯球下缀2个小灯球看成鸡,把1个大灯球下缀4个小灯球看成免。那么,1个大灯球缀2个小灯球的盏数为:
(360×4-1200)÷(4-2)=120(盏)
1个大灯球下缀4个小灯球的盏数为:
360-120=240(盏)
或(1200-2×360)÷(4-2)=240(盏)
例3 某人加工一批零件,每小时加工4件,完成任务时比预定时间晚2小时,若每小时加工6件,就可提前1小时完工。问预定时间几小时?这批零件共有多少件?
根据题意,在预定时间内,每小时加工4件,则还有(4×2)件未加工完,若每小时加工6件,则超额(“不定”)(6×1)件。符合《盈亏问题》条件。
在算术中,一定人数分一定物品,每人分的少则有余(盈),每人分的多则不足(亏),这类问题称盈亏问题。其算法是:
人数=(盈余+不足)÷分差(即两次每人分物个数之差)。
物品数=每人分得数×人数。
若两次分得数皆盈或皆亏,则
人数=两盈(亏)之差÷分差。
故有解:
零件总数:4×7+4×2=36(件)
或 6×7-6×1=36(件)
例4 一列快车从甲站开到乙站需要10小时,一列慢车由乙站开到甲站需要15小时。两辆车同时从两站相对开出,相遇时,快车比慢车多行120千米,两站间相距多少千米?
按“相遇问题”解是比较困难的,转化成为“工程问题”则能顺利求解。
快车每小时比慢车多行120÷6=20(千米)
例5 甲乙二人下棋,规定甲胜一盘得3分,乙胜一盘得2分。如果他们共下10盘,而且两人得分相等,问乙胜了几盘?
此题,看起来好像非要用方程解不可,其实它也可以用“工程问题”来解,把它化归为工程问题:“一件工作,甲独做3天完成,乙独做2天完成。如果两人合做完成这样的10件工作,乙做了几件?
例6 小前和小进各有拾元币壹元币15张,且知小前拾元币张数等于小进壹元币张数,小前壹元币张数等于小进拾元币张数,又小前比小进多63元。问小前和小进有拾元币壹元币各多少张?
本题的人民币问题可看作是两位的倒转数问题,由两位数及其倒转数性质2知,小前的拾元币与壹元币张数差为63÷9=7,故
小前拾元币为(15+7)÷2=11(张),壹元币为15-11=4(张)。
小进有拾元币4张,壹元币11张。
巧求加权平均数
例7 某班上山采药。15名女生平均每人采2千克,10名男生平均每人采3千克,这个班平均每人采多少千克?此题属加权平均数问题。一般解法:
=3-0.6=2.4(千克)
这种计算方法迅速、准确、便于心算。
算理是:设同类量a份和b份,a份中每份的数量为m,b份中每份的数量为n((m≤n)。
因为它们的总份数为a+b,总数量为ma+nb,加权平均数为:
或:
这种方法还可以推广,其算理也类似,如:
某商店用单价为2.2元的甲级奶糖15千克,1.05元的乙级糖30千克和1元的丙级糖5千克配成什锦糖。求什锦糖的单价。
小学数学各类题的答题方法6
一、概念判断法
有些判断题偷换或省略了某些形成概念的关键性词语,这时可以把已学的概念与命题进行比较,确定其正误。例如:
⑴公历年份凡能被4整除的这一年都是闰年。( )
分析:解答这道题必须明确闰年的概念:通常公历年份是4的倍数都是闰年,公历年份是整百数时,必须是400的倍数才是闰年。学生可以运用闰年的概念加以判断,得出公历年份是整百数时,必须是400的倍数才是闰年,所以该题错误。
⑵三角形的顶点到对边的距离,叫做三角形的高。( )
分析:对三角形的高,书中这样进行了定义:从三角形的顶点向它的对边画一条垂线,顶点到垂足间的线段叫做三角形的高。题目把关键词语“线段”换成了“距离”,必须正确辨析线段与距离两个概念:线段是指直线上两点间的一段,是图形,而距离是两点间的线段的长,是能够用尺量出来的数,数非图形,所以定义三角形的高时不能把线段换成距离。
二、计算判断法
有些判断题实质是容易算错的计算题,这时可以把它当作一般的计算题,先算出结果,再进行判断。例如:
⑴2×2÷2+2 50×2-98+2
=4÷4 =100-100
=1 ( ) =0 ( )
分析:上述两小题的出题意图是考查学生对四则混合运算的运算顺序是否掌握。碰到这类题目,若是基础较差的学生则可要求他们先确定运算顺序,然后再作判断。
⑵种105棵树,成活的有100棵,成活率是100%。 ( )
分析:因为成活率=成活棵数÷植树棵数×100%,所以该题的正确解应是100÷105×100%≈95.24%
三、图象判断法
有些判断题用其他方法解比较繁杂,但若能根据题意,做出草图或进行实际操作,然后根据图形的形状、位置、性质或操作结果等直观得出判断。例如:
⑴半圆形的周长就是圆周长的一半。( )
分析:解这道题不妨先画一个半圆,根据圆周长的意义,得出半圆形的周长包括该圆周长的一半加上直径的长度。所以该题错误。
⑵一根线把它两次对折后所得到的长度是原来长度的1/4。( )
分析:因为学生对分数的认识还较为粗浅,又缺少对折的认识,如果给出一张长方形的纸让他们操作,就能直观发现两次对折后所得的长度为原来的1/4,从而作出正确的判断。
四、代入判断法
对于没有给出具体数量关系的比较抽象的判断题,我们可以通过给某个量代入具体的数值,然后进行运算或推理得出结果,作出判断。例如:
⑴有两根同样长的钢管,第一根用去2米,第二根用去20%,那么剩下的部分一样长。( )
分析:①假设这两根钢管都是5米长,那么5-2=3(米) 5×(1-20%)=4(米)
②假设这两根钢管都是10米,那么10-2=8(米) 10×(1-20%)=8(米)
③假设这两根钢管都是20米,那么20-2=18(米) 20×(1-20%)=16(米)
由此可知这题是错误的。
五、反证判断法
有些判断题可以运用逆向思维,列举出反面的例子来证明该题错误或正确。例如:
⑴小数都比整数小。( )
分析:可用小数比整数大的具体例子来证明该题错误。
⑵a是整数,a的倒数是1/a。( )
分析:因为整数包括0,而0没有倒数,所以本题错误。
在实际解答判断题时究竟选用哪种方法,不仅要根据题目的具体特点,还要根据学生的思维习惯来决定,同时方法之间要相互渗透,灵活运用。
【小学数学各类题的答题方法】相关文章:
高考数学选择题答题方法03-13
中考数学选择题答题方法整理02-21
小升初数学各类应用题提要11-14
高考数学压轴题答题技巧06-08
雅思听力选择题的答题方法08-25
雅思阅读选择题的答题方法08-12
雅思听力选择题答题方法08-26
SAT数学选择题的答题技巧02-11
考研数学证明题的答题技巧12-08