初中数学单元练习题(附答案)
一、选择题(本题有10小题,每小题3分,共30分)
1、已知反比例函数 的图象经过点(1,-2),则这个函数的图象一定经过点( ▲ )
A.(2,1) B.(2,-1) C.(2,4) D.(-1,-2)
2.抛物线y=3(x-1)2+2的顶点坐标是( ▲ )
A.(-1,-2) B.(-1,2) C.(1, 2) D.(1,-2)
3. 如图,点A、B、C在⊙O上,若C=35,则 的度数为( ▲ )
A.70 B.55 C.60 D.35
4. 如图,在直角△ABC中,C=90,若AB=5,AC=4,则tanB=( ▲ )
(A)35 (B)45 (C)34 (D)43
5.如图,在⊙O中,AB是弦,OCAB于C,若AB=16, OC=6,则⊙O的半径OA等于( ▲ )
A.16 B.12 C.10 D.8
6.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒。当你抬头看信号灯时,看到黄灯的概率是( ▲ )
A、 B、 C、 D、
7.如图,在△ABC中,C=900,D是AC上一点,DEAB于点E,
若AC=8,BC=6,DE=3,则AD的长为( ▲ )
A.3 B.4 C.5 D.6
8. 如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与△ABC相似的是( ▲ )
9.下列图形中四个阴影三角形中,面积相等的是( ▲ )
10.函数y1=x(x0),y2=4x(x0)的图象如图所示,下列四个结论:
①两个函数图象的交点坐标为A (2,2); ②当x2时,y1 ③当0﹤x﹤2时,y1 ④直线x=1分别与两函数图象交于B、C两点,则线段BC的长为3;
则其中正确的结论是( ▲ )
A .①②④ B.①③④ C.②③④ D.③④
二、填空题(本题有6小题,每小题4分,共24分)
11.扇形半径为30,圆心角 为120,用它 做成一个圆锥的侧面,则圆锥底面半径为 ▲ 。
12.如图,D是△ABC中边AB上一点;请添加一个条件: ▲ ,使 △ACD∽△ABC。
13.如图,△ABC的顶点都是正方形网格中的格点,则sinABC等于 ▲ 。[来源:Zxxk.Com]
14.如图, 若点 在反比例函数 的图象上, 轴于点 , 的面积为3,则 ▲ 。
15.如 图,点P的坐标为(3,0 ), ⊙P的半径为5,且⊙P与x轴交于点A,B,与y轴交于点 C、D,则D的坐标是 ▲ 。
16. 如图,直线l1x轴于点(1,0),直 线l2x轴于点(2,0),直线l3x轴于点(3,0)直线lnx 轴于点(n,0);函数y= x的图象与直线l1,l2,l3,ln分别交于点A1,A2,A3,An,函数y=2x的图象与直线l1,l2,l3,ln分别交于点B1,B2,B3,Bn.如果△OA1B1的面积记为S1,四边形A1A2B2B1的`面积记作S2,四边形A2A3B3B2的面积记作S 3,四边形An﹣1AnBnBn﹣1的面积记作Sn,那么S2012=。
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)
17.(本题6分)
求下列各式的值:
(1) -
(2)已知 ,求 的值.
18.(本题6分)如图,AB和CD是同一地面上的两座相距36米的楼房,
在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45,楼底D的俯角
为30求楼CD的高。(结果保留根号)
19.(本题6分)李明和张强两位同学为得到一张星期六观看足球比赛的入场券,设计了一种游戏方案:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,记下数字后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为奇数,张强得到入场券;否则,李明得到入场券.
(1)请你用树状 图(或列表法)分析这个游戏方案所有可能出现的结果;
(2)这个方案对双方是否公平?为什么?
20.(本题8分)如图,AB是⊙O的直径,BC是⊙O的弦,半径ODBC,垂足为E,若BC= ,OE=3;求:
(1)⊙O的半径;
(2)阴影部分的面积。
21.(本题8分)如图,E是正方形ABCD的边AB上的动点,EFDE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)若正方形的边长为4,设AE=x,BF=y,求y与x
的函数关系式;并求当x取何值时,BF的长为1.
22.(本题10分)如图,在一面靠墙的空地上用长为24米的篱 笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,求围成花圃的最大面积。
23.(本题10分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使DAF=60,连接CF.
⑴如图1,当点D在边BC上时,
①求证:ADB=②请直接判断结论AFC=ACB+DAC是否成立;
⑵如图2,当点D在边BC的延长线上时,其他条件不变, 请写出AFC、ACB、DAC之间存在的数量关系,并说明理由;
⑶如图3,当点D在边CB的延长线上 时,且点A、F分别在直线BC的异侧,其他条件不变,请直接写出AFC、ACB、DAC之间存在的等量关系.
24.(本题12分)如图,抛物线 与x轴交A、B两点(A点在B点左侧),直线 与抛物线交于A、C两点,其中C点的横坐标为2;
(1)求A、B 两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
【参考答案】
19.(本题6分)(1)略; (2)∵P(奇数)=4∕9,P(偶数)=5∕9;
这个方案对双方不公平; (注:每小题3分)
20.(本题8分)(1)半径为6; (2)S阴影=6 (注:每小题4分)
21.(本题8分)(1)略; (2)y= - x2+x; 当x=2时,BF=1;
(注:第①小题3分,第②小题关系式3分,X值2分)
22.(本题1 0分)(1)y﹦-4x2+24x (0
(3)∵24-4x8, x又∵当x3时,S随x增大而减小;
当x﹦4时,S最大值﹦32(平方米);
(注:第①小题4分,第②小题3分,第③小题3分)
23.(本题10分)(1)①由⊿ADB≌⊿AFC可得;② 结论AFC=ACB+DAC成立;
(2)∵同理可证⊿ADB≌⊿AFC,AFC=ACB-
(3)AFC+ACB+DAC=180(或AFC=2ACB -DAC等);
(注:第①小题4分,第②小题3分,第③小题3分)
24.(本题10分)(1)A (-1,0)、 B(3, 0);直线AC解析式为y﹦-X-1;
(2)设P点坐标(m ,-m-1),则E点坐标(m ,m2-2m-3);
PE= -m2+m+2 ,当m﹦ 时, PE最大值= ;
(3)F1(-3, 0)、 F2(1,0)、 F3(4+ , 0)、 F4(4- , 0);
(注:每小题4分)
【初中数学单元练习题附答案】相关文章:
卫生资格精选练习题附答案10-18
初中英语阅读理解练习题「附答案」04-09
初中英语阅读完型练习题(附答案)10-04
专八的改错练习题(附答案)08-15
口腔执业医师练习题附答案10-30
精选最新数学试题附答案08-29
小升初数学试题附答案09-11
最新理财规划基础练习题附答案08-16
2017理财规划基础练习题附答案08-15
《钢铁是怎样炼成的》练习题(附答案)05-26