高三数学三角函数章末复习测试及答案
高三数学三角函数章末复习测试(有答案)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的)
1.已知是第一象限角,tan =34,则sin 等于()
A.45 B.35 C.-45 D.-35
解析 B 由2k<<2+2kkZ,sin cos =34,sin2+cos2=1,得sin =35.
2.在△ABC中,已知sin(A-B)cos B+cos(A-B)sin B1,则△ABC是()
A.直角 三角形 B.锐角三角形
C.钝角三角形 D.等边三角形
解析 A sin(A-B)cos B+cos(A-B)sin B=sin[(A-B)+B]=sin A1,
又sin A1,sin A=1,A=90,故△ABC为直角三角形.
3.在△ABC中,A=60,AC=16,面积为2203,那么BC的长度为()
A.25 B.51 C.493 D.49
解析 D 由S△ABC=12ABACsin 60=43AB=2203,得AB=55,再由余弦定理,
有BC2=162+552-21655cos 60=2 401,得BC=49.
4.设,都是锐角,那么下列各式中成立的是()
A.sin(+sin +sinB.cos(+cos cos
C.sin(+sin(-) D.cos(+cos(-)
解析 C ∵sin(+)=sin cos +cos sin ,sin(-)=sin cos -cos sin ,
又∵、都是锐角,cos sin 0,故sin(+sin(-).
5.张晓华同学骑电动自行车以24 km/h的速度沿着正北方向的公路行驶,在点A 处望见电
视塔S在电动车的北偏东30方向上,15 min后到点B处望见电视塔在电动车的北偏东
75方向上,则电动车在点B时与电视塔S的距离是()
A.22 km B.32 km C.33 km D.23 km
解析 B 如图,由条件知AB=241560=6 .在△ABS中,BAS=30,
AB=6,ABS=180-75=105,所以ASB=45.
由正弦定理知BSsin 30=ABsin 45,
所以BS=ABsin 30sin 45=32.故选B.
(2011威海一模)若函数y=Asin(x+)+m的最大值为4,最小值为0,最小正周期为2,
直线x=3是其图象的一条对称轴,则它的解析式是()
A.y=4sin4x+ B.y=2sin2x+3+2
C.y=2sin4x+3 +2 D.y=2sin4x+6+2
解析 D ∵A+m=4,-A+m=0,A=2,m=2.
∵T=2,=2T=4.y=2sin(4x+)+2.
∵x=3是其对称轴,sin43+=1.
43+2+kZ). =k6(kZ).
当k=1时,6,故选D.
7.函数y=sin(2x+)是R上的偶函数,则的'值是()
A.0 B. C. D.
解析 C 当2时,y=sin2x+2=c os 2x,而y=cos 2x是偶函数.
8.在△ABC中“cos A+sin A=cos B+sin B”是“C=90”的()
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 B C=90时,A与B互余,sin A=cos B,cos A=sin B,有cos A+sin A=cos B+sin B成立;但当A=B时,也有cos A+sin A=cos B+sin B成立,故“cos A+sin A=cos B+sin B”是“C=90”的必要不充分条件.
9.△ABC的三边分别为a,b,c,且满足b2=ac,2b=a+c,则此三角形是()
A.钝角三角形 B.直角三角形
C.等腰直角三角形 D.等边三角形
解析 D ∵2b=a+c,4b2=(a+c)2,
又∵b2=ac,(a-c)2=0,a=c,2b=a+c=2a,
b=a,即a=b=c.
10.f(x)=Asin(x+)(A>0,>0)在x=1处取最大值,则()
A.f(x-1)一定是奇函数 B.f(x-1)一定是偶函数
C.f(x+1)一定是奇函数 D.f(x+1)一定是偶函数
解析 D ∵f(x)=Asin(x+)(A>0,>0)在x=1处取最大值,f(x+1)在x=0处取最大值,即y轴是函数f(x+1)的对称轴,函数f(x+1)是偶函数.
11.函数y=sin2x-3在区间-上的简图是()
解析 A 令x=0得y=sin-3=-32,排除B,D.由f-3=0,f6=0,排除C.
12.若tan =lg(10a),tan =lg1a,且+=4,则实数a的值为()
A.1 B.110 C.1或110 D.1或10
解析 C tan(+)=1tan +tan 1-tan tan=lg10a+lg1a1-lg10alg1a=1lg2a+lg a=0,
所以lg a=0或lg a=-1,即a=1或110.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.(2011黄冈模拟)已知函数f(x)=Acos(x+)的图象如图所
示,f2=-23,则f(0)=________.
解析 由图象可得最小正周期为2 所以f(0)=f23,注意到22关于712对称,
故f23=-f2=23.
【答案】 23
14.设a、b、c分别是△ABC中角A、B、C所对的边,sin2A+sin2B-sin Asin B=sin2C,且
满足ab=4,则△ABC的面积 为________.
解析 由sin2A+sin2B-sin Asin B=sin2C,得a2+b2-ab=c2,2cos C=1.C=60.
又∵ab=4,S△ABC=12absin C=124sin 60=3.
【答案】 3
15.在直径为30 m的圆形广场中央上空,设置一个 照明光源,射向地面的光呈圆形,且其
轴截面顶角为120,若要光源恰好照亮整个广场,则光源的
高度为________m.
解析 轴截面如图,则光源高度h=15tan 60=53(m).
【答案】 53
16. 如图所示,图中的实线是由三段圆弧连接而成的一条封闭曲线C,各段弧所在的圆经过同一点P(点P不在C上)且半径相等.设第i段弧所对的圆心角为i(i=1,2,3),则cos13cos2+33-sin13sin2+33=________.
解析 记相应的三个圆的圆心分别是O1,O2,O3,半径为r,依题意知,可考虑特殊情
形,从而求得相应的值.当相应的每两个圆的公共弦都恰好等于圆半径时,易知
有1=2=3=23=43,此时cos13cos2+33-sin13sin2+33
=cos1+2+33=cos43=cos3=-cos3=-12.
【答案】 -12
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(10分)在△ABC中,如果lg a-lg c=lg sin B=lg22,且B为锐角,试判断此三角形的形状.
解析 ∵lg sin B=lg22,sin B=22,
∵B为锐角,B=45.
又∵lg a-lg c=lg22,ac=22.
由正弦定理,得sin Asin C=22,
2sin C=2sin A=2sin(135-C),
即sin C=sin C+cos C,cos C=0,C=90,
故△ABC为等腰直角三角形.
18.(12分)已知函数f(x)=2cos2x+2sin xcos x+1(xR,>0)的最小正周期是2.
(1)求 的值;
(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.
解析 (1)f(x)=1+cos 2x+sin 2x+1
=sin 2x+cos 2x+2
=2sin2x+4+2.
由题设,函数f(x)的最小正周期是2,可得2=2,
所以=2.
(2)由(1)知,f(x)=2sin4x+4+2.
当4x+2+2kZ),即x=16+k2(kZ)时,
sin4x+4取得最大值1,所以函数f(x)的最大值是2+2,此时x的集合为xx=16+k2,kZ.
19.(12分)在△ABC 中,角A,B,C的对边分别为a,b,c,且sin Aa=3cos Cc.
(1)求角C的大小;
(2)如果a+b=6,CACB=4,求c的值.
解析 (1)因为asin A=csin C,sin Aa=3cos Cc,
所以sin C=3cos C.所以tan C=3.
因为C(0,),所以C=3.
(2)因为CACB=|CA||CB|cos C=12ab=4,
所以ab=8.因为a+b=6,根据余弦定理,得
c2=a2+b2-2abcos C=(a+b)2-3ab=12.
所以c的值为23.
20.(12分)在△ABC中,a, b,c分别是角A,B,C的对边,m=(2b-c,cos C),n=(a,cos A),且m∥n.
(1)求角A的大小;
(2)求y=2sin2B+cos3-2B的值域.
解析 (1)由m∥n得(2b-c)cos A-acos C=0.
由正弦定理得2sin Bcos A-sin Ccos A-sin Acos C=0.
所以2sin Bcos A-sin(A+C)=0,
即2sin Bcos A-sin B=0.
因为A,B(0,),所以sin B0,cos A=12,
所以A =3.
(2)y=2sin2B+cos3cos 2B+sin3sin 2B
=1-12cos 2B+32sin 2B
=sin2B-6+1.
由(1)得023,所以-2B-76,
所以sin2B--12,1,所以y12,2.
21.(12分)设函数f(x)=sin(2x+)(-0)的图象过点8,-1.
(1)求;
(2)求函数y=f(x)的周期和单调增区间;
(3)画出函数y=f(x)在区间[0,]上的图象.
解析 (1)∵f(x)=sin(2x+)的图象过点8,-1,
-1=sin4+,4=2k2(kZ),
又(-,0),=-34.f(x)=sin2x-34.
(2)由题意,T=2,由(1)知f(x)=sin2x-34,
由2k22x-32k2(kZ)得增区间为k8,k8(kZ).
(3)f(x)在[0,]上的图象如图:
22.(12分)已知sin-4=35,34.
(1)求cos-4的值;
(2)求sin 的值.
解析 (1)∵sin-4=35,且34,
0-2,cos-4= 45.
(2)sin =sin-4=sin-4+cos-4=7210.
【高三数学三角函数章末复习测试及答案】相关文章:
高三数学数列章末检测题及答案04-10
数学复习试卷及答案07-09
七年级下数学概率初步章末复习题10-31
2018年高考数学复习模拟测试题及答案06-18
高考数学备考精选:三角函数与向量复习03-01
小升初数学复习测试卷07-04
小学数学复习测试卷07-09
高三数学的复习技巧06-30
高三数学复习技巧06-30