数学 百文网手机站

六年下册数学课堂答案

时间:2021-06-23 18:44:24 数学 我要投稿

六年下册数学课堂答案

  导语:幸福在身边,依然不知足,深夜里不知疲倦的修改着你我既定的命运,却不能拨动历史的轮盘,你我终究会陌路,对吗?我不信。以下小编为大家介绍六年下册数学课堂答案文章,欢迎大家阅读参考!

六年下册数学课堂答案

  六年下册数学课堂答案

  1. 列式计算:

  (1)(294.4-19.26)(6+8) (2)12.50.760.482.5

  2. (1)二数相乘,若被乘数增加12,乘数不变,积增加60,若被乘数不变,乘数增加12,积增加144,那么原来的积是什么

  (2)1990年6月1日是星期五,那么,2000年10月1日是星期几

  3. 一角钱6张,伍角钱2张,一元钱8张,可以组成多少种不同的币值

  4. 现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子.要求每行每列所放的棋子数的和都是偶数,应该怎样放,在图上表示出来.

  5. 有一栋居民楼,每家都订了2份不同的报纸,该居民楼共订了三种报纸,其中,中国电视报34份,北京晚报30份,参考消息22份,那么订北京晚报和参考消息的共有多少家

  6. 在桌子上有三张扑克牌,排成一行,我们已经知道:

  (1)k右边的两张牌中至少有一张是A.

  (2)A左边的两张牌中也有一张是A.

  (3)方块左边的两张牌中至少有一张是红桃.

  (4)红桃右边的两张牌中也有一张是红桃.

  请将这三张牌按顺序写出来.

  7. 将偶数排成下表:

  A B C D E

  2 4 6 8

  16 14 12 10

  18 20 22 24

  32 30 28 26

  那么,1998这个数在哪个字母下面

  8. 在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之和都是20,已知第4格填9,第12格填7,那么,第8个格子中应填什么数

  9. 将自然数1,2,315,这15个自然数分成两组数A和B.求证:A或者B中,必有两个不同的数的和为完全平方数.

  10. 把一张纸剪成6块,从中任取几块,将每一块剪成6块,再任取几块,又将每一块剪成6块,如此剪下去,问:经过有限次后,能否恰好剪成1999块 说明理由.

  试题二答案

  1. (1)(294.4-19.26)(6+8)

  =179.214

  =12.8

  (2)12.50.760.482.5

  =(12.58)(0.42.5)0.76

  =10010.76=76

  2.

  (1)解:二数相乘,若被乘数增加12,乘数不变,积增加60,若被乘数不变,乘数增加12,积增加144,那么原来的积是什么

  设原题为ab

  据题意:(a+12)b=ab+60

  可得:12b=60 b=5

  同样:(b+12)a=ab+144

  从而:12a=144 a=12

  原来的积为:125=60

  (2)解:1990年6月1日是星期五,那么,2000年10月1日是星期几

  一年365天,十年加上1992,1996,2000三个闰年的3天,再加上六,七,八,九月的天数,还有10月1日,共

  3650+3+30+31+31+30+1

  =3776

  37767=5393

  1990年6月1日星期五,所以,2000年10月1日是星期日.

  3. 一角钱6张,伍角钱2张,一元钱8张,可以组成多少种不同的币值

  答:所有的钱共有9元6角.

  最小的币值是一角,而有6张,与伍角可以组成一角,二角九角,一元的所有整角钱数.所以,可以组成从一角到九元六角的所有整角,共96种不同钱数.

  4. 现将12枚棋子,放在图中的20个方格中,每格最多放1枚棋子.要求每行每列所放的棋子数的和都是偶数,应该怎样放,在图上表示出来.

  图解(○)代表棋子):

  答案不唯一.

  5. 有一栋居民楼,每家都订了2份不同的报纸,该居民楼共订了三种报纸,其中,中国电视报34份,北京晚报30份,参考消息22份,那么订北京晚报和参考消息的共有多少家

  解:每家订2份不同报纸,而共订了

  34+30+22=86(份)

  所以,共有43家.

  订中国电视报有34家,那么,设订此报的有9家.

  而不订中国电视报的人家,必然订的是北京晚报和参考消息.

  所以,订北京晚报和参考消息的共有9家.

  6. 在桌子上有三张扑克牌,排成一行,我们已经知道:

  (1)k右边的两张牌中至少有一张是A.

  (2)A左边的两张牌中也有一张是A.

  (3)方块左边的两张牌中至少有一张是红桃.

  (4)红桃右边的两张牌中也有一张是红桃.

  请将这三张牌按顺序写出来.

  解:设桌上的三张牌为甲,乙,丙,由条件(1)k右边有两张牌,所以,甲必是k,且乙,丙中至少有一张是A.

  由条件(2),A的左边还有A,那么,必然乙,丙都是A.

  同样,可推出,由(4)知:甲为红桃.由(3)得丙为方块,再由(4)即得乙是红桃.

  三张牌的顺次为:红桃k,红桃A,方块A.

  7. 将偶数排成下表:

  A B C D E

  2 4 6 8

  16 14 12 10

  18 20 22 24

  32 30 28 26

  那么,1998这个数在哪个字母下面

  解:由图表看出:偶数依次排列,每8个偶数一组依次按B,C,D,E,D,C,B,A列顺序排.

  看A列,E列得到排列顺序是以16为周期来循环的.

  199816=12414

  所以,1998与14同列在B列.

  8. 在下图的14个方格中,各填上一个整数,如果任何相连的三个方格中填的数之和都是20,已知第4格填9,第12格填7,那么,第8个格子中应填什么数

  解:设a,b,c,d是任连续四格中的`数,据题意:

  a+b+c=20=b+c+d

  a=d

  那么,第1,4,7,10,13格中的数相同,都是9.

  同样,第3,6,9,12格中的数都是7.

  那么,第2,5,8,11,14格中的数相同,都应为:

  20-9-7=4

  9. 将自然数1,2,315,这15个自然数分成两组数A和B.求证:A或者B中,必有两个不同的数的和为完全平方数.

  解:假设A,B两组中都没有不同的两个数的和是完全平方数,我们说明是不可能的.

  不妨设1在A组

  1+3=4=,1+15=16=

  3,15都在B组

  3+6=9=

  6须在A组

  6+10=16=

  又得到10应在B组,这时,B组已有两数和为完全平方数了.

  10+15=25=

  所以,在A组或B组中,必有两个不相同的数的和为完全平方数.

  10. 把一张纸剪成6块,从中任取几块,将每一又块剪成6块,再任取几块,又将每一块剪成6块,如此剪下去,问:经过有限次后,能否恰好剪成1999块 说明理由.

  解:设剪成6块后,第一次从中取出块,将每一块剪成6块,则多出了5块,这时,共有:

  6+5=1+5+5

  =5(+1)+1(块)

  第二次从中又取出块,每块剪成6块,增加了5块,这时,共有

  6+5+5

  =5(++1)+1(块)

  以此类推,第n次取块,剪成6块后共有

  5(++++1)+1(块)

  因此,每次剪完后,纸的总数都是(5k+1)的自然数(即除以5余1)

  19995=3994

  所以,不可能得到1999张纸块.

  这就是我们为大家提供的六年级暑假作业下册答案,希望同学们都能过一个快乐而又充实的暑假!

【六年下册数学课堂答案】相关文章:

名校课堂数学下册答案01-26

数学精致课堂答案04-11

课堂点睛数学答案01-20

高效课堂数学答案01-20

课堂数学卷子及答案04-10

主体课堂答案数学04-10

数学卓越课堂答案04-10

暑假课堂数学答案09-28

六年级下册数学阳光课堂练习答案04-10