八年级上册的数学答案
一.选择题(共12小题)
1.解:原式=a2a4=a2+4=a6,故选:B.
2.解:∵x2+2mx+9是一个完全平方式,∴m=±3,故选:B.
3. 解:∵(x﹣1)2=(x+7)(x﹣7),
∴x2﹣2x+1=x2﹣49,
解得x=25,
∴ = =5,
∴ 的平方根是± .
故选D.
4.解:A、原式=x2+y2,不符合平方差公式的特点;
B、第一个数是2x,第二个数是y,积的项应是4xy,不符合完全平方公式的特点;
C、正确;D、两个平方项应同号.故选C.
5. 解:∵a3b+ab3﹣2a2b+2ab2=7ab﹣8,
ab(a2+b2)﹣2ab(a﹣b)=7ab﹣8,
ab(a2﹣2ab+b2)﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,
ab(a﹣b)2﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,
ab[(a﹣b)2﹣2(a﹣b)+1]+2(a2b2﹣4ab+4)=0,
ab(a﹣b﹣1)2+2(ab﹣2)2=0,
∵a、b均为正数,
∴ab>0,
∴a﹣b﹣1=0,ab﹣2=0,
即a﹣b=1,ab=2,
解方程 ,
解得a=2、b=1,a=﹣1、b=﹣2(不合题意,舍去),
∴a2﹣b2=4﹣1=3.
故选B.
6.解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,
∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选A.
7. 解:设这个正多边形是正n边形,根据题意得:
(n﹣2)×180°÷n=144°,解得:n=10.故选:B.
8. 解:图中全等三角形有:△ABO≌△ADO、△ABO≌△CDO,△ABO≌△CBO;
△AOD≌△COD,△AOD≌△COB;
△DOC≌△BOC;
△ABD≌△CBD,
△ABC≌△ADC,
共8对.
故选C.
9. 解:根据角平分线的性质,(3)的依据是到角的两边的距离相等的点在角平分线上,
故选B.
10. 解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9
∵4+4<9,故4,4,9不能构成三角形,应舍去
4+9>9,故4,9,9能构成三角形
∴它的周长是4+9+9=22故选D.
11.解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;
②OA为等腰三角形一条腰,符合符合条件的动点P有三个.
综上所述,符合条件的点P的个数共4个.
故选C.
12.
解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH∠EAB=∠EFA=∠BGA=90°,
∠EAF+∠BAG=90°,∠ABG+∠BAG=90°∠EAF=∠ABG,
∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG△EFA≌△ABG
∴AF=BG,AG=EF.
同理证得△BGC≌△DHC得GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16
故S= (6+4)×16﹣3×4﹣6×3=50.
故选A.
二.填空题(共6小题)
13.已知a+b=2,则a2﹣b2+4b的值为 4 .
解:∵a+b=2,
∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.
14.计算:(a3)2+a5的.结果是 a6+a5 .
解:(a3)2+a5=a3×2+a5=a6+a5.
15.若2x3+x2﹣12x+k有一个因式为2x+1,则k为 ﹣6 .
解:2x3+x2﹣12x+k=(2x+1)(x2﹣6),∴k=﹣6,
16.一个多边形的每个外角都等于72°,则这个多边形的边数为 5 .
解:多边形的边数是:360÷72=5.
17.如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件 ∠BDE=∠BAC ,使△ABC≌△DBE.(只需添加一个即可)
解:∵∠ABD=∠CBE,
∴∠ABD+∠ABE=∠CBE+∠ABE,
即∠ABC=∠DBE,
∵AB=DB,
∴①用“角边角”,需添加∠BDE=∠BAC,
②用“边角边”,需添加BE=BC,
③用“角角边”,需添加∠ACB=∠DEB.
故答案为:∠BDE=∠BAC或BE=BC或∠ACB=∠DEB.(写出一个即可)
18.如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是 400 .
解:如图①
∵△ABC是等边三角形,
∴AB=BC=AC,
∵A′B′∥AB,BB′=B′C= BC,
∴B′O= AB,CO= AC,
∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.
又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,
第2个图形中大等边三角形有4个,小等边三角形有4个,
第3个图形中大等边三角形有6个,小等边三角形有6个,…
依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.
故第100个图形中等边三角形的个数是:2×100+2×100=400.
三.解答题(共8小题)
19.运用乘法公式计算:
(1)1997×2003;(2)(﹣3a+2b)(3a+2b);(3)(2b﹣3a)(﹣3a﹣2b).
解:(1)原式=(2000﹣3)×(2000+3)
=20002﹣32
=4000000﹣9=3999991;
(2)原式=(2b)2﹣(3a)2
=4b2﹣9a2;
(3)原式=(﹣3a)2﹣(2b)2
=9a2﹣4b2.
20.分解因式:
3﹣3a2﹣10a
解:(1) x2y﹣8y,
= y(x2﹣16),
= y(x+4)(x﹣4);
(2)a3﹣3a2﹣10a,
=a(a2﹣3a﹣10),
=a(a+2)(a﹣5).
【八年级上册的数学答案】相关文章:
八年级上册数学答案04-11
2017八年级上册数学答案04-12
八年级上册数学试卷及答案04-12
八年级上册数学寒假生活指导答案04-01
八年级数学上册期末试卷及答案04-12
八年级上册数学练习册答案人教版01-27
八年级上册数学寒假作业答案03-05
数学上册期中复习试卷答案07-09
一上册寒假数学作业答案07-24