小学4年级数学应用题有哪些

时间:2023-06-26 06:38:55 泽森 数学 我要投稿
  • 相关推荐

小学4年级数学应用题有哪些

  应用题是指将所学知识应用到实际生活实践的题目。在数学上,应用题分两大类:一个是数学应用。以下是小编为大家整理的小学4年级数学应用题有哪些相关内容,仅供参考,希望能够帮助大家。

小学4年级数学应用题有哪些

  小学4年级数学应用题有哪些1

  一、简单应用题

  只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

  1、加法应用题:

  a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

  b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

  2、减法应用题:

  a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

  b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

  c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

  3、乘法应用题:

  a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

  b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

  4、除法应用题:

  a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

  b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

  C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

  d已知一个数的几倍是多少,求这个数的应用题。

  5、常见的数量关系:

  总价 = 单价×数量

  路程 = 速度×时间

  工作总量=工作时间×工效

  总产量=单产量×数量

  二、复合应用题

  有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

  1、含有三个已知条件的两步计算的应用题。

  求比两个数的和多(少)几个数的应用题。

  比较两数差与倍数关系的应用题。

  2、含有两个已知条件的两步计算的应用题。

  已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

  已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

  3、连乘连除应用题。

  4、三步计算的应用题。

  三、典型应用题

  具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

  1、平均数问题:平均数是等分除法的发展。

  解题关键:在于确定总数量和与之相对应的总份数。

  算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

  数量关系式:数量之和÷数量的个数=算术平均数。

  加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

  数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。

  差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

  数量关系式:(大数-小数)÷2=小数应得数

  最大数与各数之差的和÷总份数=最大数应给数

  最大数与个数之差的和÷总份数=最小数应得数。

  例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。

  分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)

  2、归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

  根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

  根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

  一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”

  两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”

  正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

  反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

  解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

  数量关系式:单一量×份数=总数量(正归一)

  总数量÷单一量=份数(反归一)

  例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?

  分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

  3、归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

  特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

  数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量

  单位数量×单位个数÷另一个单位数量 = 另一个单位数量。

  例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?

  分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)

  4、和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

  解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

  解题规律:(和+差)÷2 = 大数 大数-差=小数

  (和-差)÷2=小数 和-小数= 大数

  例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?

  分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)

  5、和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。

  解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的'数量。

  解题规律:和÷倍数和=标准数 标准数×倍数=另一个数

  例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?

  分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。

  列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)

  6、差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

  解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。

  例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?

  分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

  7、行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

  解题关键及规律:

  同时同地相背而行:路程=速度和×时间。

  同时相向而行:相遇时间=速度和×时间

  同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。

  同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。

  例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?

  分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。

  已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)

  8、流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。

  船速:船在静水中航行的速度。

  水速:水流动的速度。

  顺水速度:船顺流航行的速度。

  逆水速度:船逆流航行的速度。

  顺速=船速+水速

  逆速=船速-水速

  解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。

  解题规律:船行速度=(顺水速度+ 逆流速度)÷2

  流水速度=(顺流速度逆流速度)÷2

  路程=顺流速度× 顺流航行所需时间

  路程=逆流速度×逆流航行所需时间

  例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?

  分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。

  9、还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。

  解题关键:要弄清每一步变化与未知数的关系。

  解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。

  根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。

  解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。

  例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?

  分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)

  一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。

  10、植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。

  解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。

  解题规律:沿线段植树

  棵树=段数+1 棵树=总路程÷株距+1

  株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)

  沿周长植树

  棵树=总路程÷株距

  株距=总路程÷棵树

  总路程=株距×棵树

  例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。

  分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

  11、盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。

  解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。

  解题规律:总差额÷每人差额=人数

  总差额的求法可以分为以下四种情况:

  第一次多余,第二次不足,总差额=多余 + 不足

  第一次正好,第二次多余或不足 ,总差额 = 多余或不足

  第一次多余,第二次也多余,总差额 = 大多余 - 小多余

  第一次不足,第二次也不足,总差额 = 大不足 - 小不足

  例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?

  分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

  12、年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。

  解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。

  例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?

  分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年)

  13、鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题

  解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。

  解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数

  兔子只数=(总腿数-2×总头数)÷2

  如果假设全是兔子,可以有下面的式子:

  鸡的只数=(4×总头数-总腿数)÷2

  兔的头数=总头数-鸡的只数

  例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?

  兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)

  鸡的只数 50-35=15 (只)

  四、分数和百分数的应用

  1、分数加减法应用题:

  分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

  2、分数乘法应用题:

  是指已知一个数,求它的几分之几是多少的应用题。

  特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

  解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

  3、分数除法应用题:

  求一个数是另一个数的几分之几(或百分之几)是多少。

  特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。

  解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。

  甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

  甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。

  已知一个数的几分之几(或百分之几 ) ,求这个数。

  特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

  解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际

  数量。

  4、出勤率

  发芽率=发芽种子数/试验种子数×100%

  小麦的出粉率= 面粉的重量/小麦的重量×100%

  产品的合格率=合格的产品数/产品总数×100%

  职工的出勤率=实际出勤人数/应出勤人数×100%

  5、工程问题:

  是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

  数量关系式:

  工作总量=工作效率×工作时间

  工作效率=工作总量÷工作时间

  工作时间=工作总量÷工作效率

  工作总量÷工作效率和=合作时间

  6、纳税

  纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

  缴纳的税款叫应纳税款。

  应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。

  7、利息

  存入银行的钱叫做本金。

  取款时银行多支付的钱叫做利息。

  利息与本金的比值叫做利率。

  利息=本金×利率×时间

  小学4年级数学应用题有哪些2

  1、图书室有故事书98本,今天借出46本,还回25本。现在图书室有故事书多少本?

  2、一件儿童上衣48.5元,一条长裤比上衣便宜9.8元,一条裙子又比长裤贵2.5元。这条裙子多少钱?

  3、爸爸带小明去滑雪,乘缆车上山用了4分钟,缆车每分钟行200米。滑雪下山用了20分钟,每分钟行70米。滑雪比乘缆车多行多少米?

  4、某县城到省城的公路长160千米。一辆汽车走高速路的速度是80千米/时,走普通公路的速度是40千米/时。从县城去省城走高速路比普通公路节省多少时间?

  5、大同乡中心小学在荒山上植树,2002年共植树356棵,2003年植树3次,每次植树140棵。哪一年植的树多?多多少棵?

  6、李伯伯家养了42只鸡,养鸭的只数是鸡的一半。李伯伯家一共养鸡、鸭多少只?

  7、书架上有两层书,共144本。如果从下层取出8本放到上层去,两层书的本数就相同。书架上、下层各有多少本书?

  8、学校运来大米850千克,运了3车,还剩100千克。平均每车运多少千克?

  9、王老师要批改48篇作文,已经批改了12篇。如果每小时批改9篇,还要几小时能批改完?

  10、动物园里的`一头大象每天吃180千克食物,一只熊猫2天吃72千克食物。大象每天吃的食物是熊猫的几倍?

  11、水果店运来苹果、香蕉各8箱。苹果每箱25千克,香蕉每箱18千克。一共运来水果多少千克?

  12、小林身高124厘米,是表妹身高的2倍,而舅舅身高是表妹的3倍。舅舅身高是多少厘米?

  13、学校组织植树,一共有25个小组,每个小组种了5棵树苗。购买树苗花了1250元,每棵树苗多少钱?

  14、小丽家每天要买一盒牛奶和一袋豆浆。牛奶每袋2.40元,比豆浆贵1.80元。小丽家一个星期买牛奶和豆浆要花多少钱?

  15、张英、李强和肖红参加跳高比赛,张英跳了1.1米,比李强低了0.15米。肖红比李强跳得低0.09米,肖红跳了多高?

  16、地球表面积是5.1亿平方千米,其中陆地面积是1.49亿平方千米。海洋面积比陆地面积多多少亿平方千米?

  17、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  18、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  19、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟。

  20、学校楼前摆放了一个方阵花坛。这个花坛的最外层每边各摆放8盆花,最外层共摆了多少盆花?

  21、啄木鸟7天能吃4515只害虫,山雀一周能吃1155只害虫。啄木鸟平均每天比山雀多吃害虫多少只?

  22、一个长方形的长是0.54米,比宽多8厘米,这个长方形的周长是多少米?

  23、一个足球48.30元,一个篮球54.20元,王老师用150元买足球、篮球各一个,应找回多少元?

  24一把椅子35.4元,比一张桌子便宜16.2元,小明买一套桌椅,共用多少元?

  25、某公园上午有游人180人,下午有270人。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?

  26、有1800个乒乓球,每6个装一筒,每20筒装一箱,这些乒乓球需要装多少箱?

  27、风扇厂某车间每天装配电风扇125台,多少天才能装配完3500台?

  28、仓库有汽水250箱,现在用车运走,如果每车最多装30箱,能装多少辆车?还剩多少箱?

  29、小华身高132厘米,小英比小华高13厘米,两人身高一共多少厘米?

  30、光明小学四、五年级师生接受上山植树任务,四年级去了38人,五年级去了26人,两级共植树640棵,平均每人植树多少棵?

  31、某粮仓运进大米320吨,相当于原来存粮数的4倍,原来存粮多少吨?

  32、一块正方形地周长是32米,它的面积是多少平方米?

  33、一个商店运进8箱运动衣,每箱50件,每件卖60元,一共可以卖多少元?

  34、育强小学有20个班,平均每班40人,他们共向穷困地区小学捐献图书3200本,平均每人捐图书多少本?

  35、某车间要生产电视机1560台,已经生产了8天,每天生产120台,剩下的每天生产150台,还要几天才能完成任务?

  小学4年级数学应用题有哪些3

  1、一个滴水的水龙头一星期要白白流掉84千克水。照这样计算,一个月要流掉多少千克水?(一个月按30天计算。)

  2、学校开展花香校园活动,四年级3个班,每班准备植树23棵,三年级5个班,每班准备植树12棵,两个年级共植树多少棵?

  3、两块长方形蔬菜地,长都是48米,其中白菜地宽25米,黄瓜地宽12米。白菜地的面积比黄瓜地面积多多少平方米?

  4、动物园的一只大象2天吃450千克食物,一只熊猫4天吃72千克食物。一只大象每日的食量比一只熊猫多多少千克?

  5、停车场停有大货车45辆,客车的'数量是货车的2倍,小汽车比大货车和客车的总和还多20辆,停车场有小汽车多少辆?

  1、分析和解答:

  首先算出一天用多少千克的.水,一周七天,一周流掉84千克,也就是一天用:84÷7=12千克

  然后一个月按30天计算,也就是一个月流掉水的重量:30×12=360千克

  答:一个月要流掉360千克水。

  2、分析和解答:

  先算出四年级3个班总种植多少棵树:3×23=69棵,接着计算三年级5个班总种植多少棵树:5×12=60棵。然后两个年级共植树:60+69=129棵。

  答:两个年级共植树129棵。

  3、分析和解答:

  先算出白菜占地多少平方,25×48=1200平方米。再算出黄瓜占地多少平方,12×48=576平方米。

  白菜地的面积减去黄瓜地的面积,就是多出来的地。1200-576=624平方米。

  答:白菜地的面积比黄瓜地面积多624平方米。

  4、分析和解答:

  先算出大象一天食量多少,450÷2=225千克。再算出大象一天食量多少,72÷4=18千克。

  然后算出一只大象每日的食量比一只熊猫多出多少千克:225-18=207千克。

  答:一只大象每日的食量比一只熊猫多207千克。

  5、分析和解答:

  先算出客车的数量:45×2=90辆。接着算小汽车的数量:45+90+20=155辆

  答:停车场有小汽车155辆。

  小学4年级数学应用题有哪些4

  1、体育老师买了8盒羽毛球,每盒12只,共288元,平均每只羽毛球多少元?

  2、李师傅生产一批零件,原计划平均每小

  时生产50个,6小时完成。实际5小时就完成了任务,实际平均每小时生产多少个?

  3、商店运来5箱水果,共重50千克。如果把这些水果换成小箱来装,每箱重量是原来的一半,这些水果能装多少箱?

  4、84千克黄豆可榨12千克油,照这样计算,如果要榨120千克油需要黄豆多少千克?

  5、学校体育组有36人,美术组的人数比体育组的2倍少12人。学校美术组有多少人?

  6、四年级要买5本相册和5枝自动铅笔奖励三好学生。买相册用了28.75元,买自动铅笔用了6.15元,一本相册比一枝自动铅笔贵多少元?

  7、东关小学体育队有71人,其中15人是篮球队员,田径队员的`人数是篮球队员的2.4倍,其余的是足球队员。足球队有多少人?

  8、商店运来16筐苹果,每筐42.5千克。运来的梨比苹果重量的2倍少120千克。运来的梨有多少千克? .

  9、同学们做操,每25人排成一排,男生排了30排,女生排了28排。男生比女生多多少人?

  10、小明看一本180页的故事书,已经看了3天,平均每天看24页。剩下的平均每天看36页,还要几天才能看完?

  参考答案

  1、288÷(8×12) =288÷96 =3(元)

  答:平均每只羽毛球3元。

  2、解:6×50÷5 =300÷5 =60(个)

  答:实际平均每小时生产60个.

  3、解:50÷[50÷5÷2] =50÷5 =10(箱)

  答:这些水果能装10箱。

  4、每千克油所需大豆×油的总量=所需大豆

  解:(84÷12)×120

  =7×120 =840(千克)

  答:如果要榨120千克油需要黄豆840千克。

  5、解:36×2-12 =72-12 =60(人)

  答:学校美术组有60人。

  6、解:28.75÷5-6.15÷5 =5.75-1.23 =4.52(元)

  答:一本相册比一枝自动铅笔贵4.52元.

  7、解:71-15-15×2.4 =71-15-36 =20(人)

  答:足球队有20人。

  8、解:(16×42.5)×2-120 =670×2-120 =1340-120 =1120(千克)

  答:运来的梨有1120千克.

  9、解:(30-28)×25 =2×25 =50(人)

  答:男生比女生多50人.

  10、解:(180-3×24)÷36 =108÷36 =3(天)

  答:还要3天才能看完.

【小学4年级数学应用题有哪些】相关文章:

济南小升初数学考试之应用题题常见错误有哪些03-22

复习数学的方法有哪些03-29

小学数学和差应用题08-03

小学数学方案问题应用题08-17

数学高效备考有哪些方法11-30

小学数学应用题综合训练题07-17

小学生数学应用题及答案07-03

小学数学应用题之还原问题05-12

数学常用的解题方法有哪些呢07-03