数学 百文网手机站

初一期中数学试卷答案

时间:2021-06-21 13:00:53 数学 我要投稿

初一期中数学试卷答案

  期中考试即将到来,教师们是如何准备习题的呢?下面是小编带来的关于 初一期中数学试卷的内容,希望会对大家有所帮助!

初一期中数学试卷答案

  初一期中数学试卷:

  一、选择题(每题2分,共12分)

  1. 的绝对值是(  )

  A. 3 B. -3 C. D.

  2.扬州市某天最高气温8℃,最低气温-1℃,那么这天的日温差是(  )

  A. 7℃ B. 9℃ C. -9℃ D. -7℃

  3.代数式-7,x,x2y, ,-5a2b3, 中,单项式有(  )个.

  A. 3 B. 4 C. 5 D. 6

  4.下列说法中,正确的是(  )

  A. 一个有理数的平方总是正数

  B. 最大的负数是-1

  C. 有理数包括正有理数和负有理数

  D. 没有最大的正数,也没有最小的负数

  5.如图是一个由六个小正方体组成的几何体,每个小正方体的六个面上都写有-1,2,3,-4,5,-6,那 么图中所有看不见的面上的数字和是(  )

  A. 9 B. 8 C. -15 D. -13

  二、填空题(每题2分,共20分)

  6.-1 的相反数是      ,倒数是      .

  7.单项式 的系数是      ;次数是      .

  8.钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为      .

  9.若实数a满足a-2a-1003=0,则2a-4a+5=      .

  10.若x=2是方程 的解,则 的值是      .

  11.初一(1)班原有学生40人,其中有男生a人,开学几天后又转来2名女生,则现在女生占全班的比例为      .

  12.请你做评委:在一堂数学活动课上,在同一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:

  ①小明说:“到表示-1的点距离不大于2的所有的点有5个.”

  ②小亮说:“当m=3时,代数式3x-y-mx+2中不含x项”

  ③小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.”

  ④小彭说:“多项式2x3y-x2y2+25的次数是5是一 次三项式.”

  你觉得他们的说法正确的是      (填序号)

  13.某商场购进一批衣服,进价为每套240元,若每套以280元的价格销售,每天可销售200套.经调查发现如果每套比原售价降低5元销售,则每天可多销售10套.现若每套降低x元,则每天可获的总利润      元.(用含x的代数式表示)(总利润=销售总额-总进价)

  14.如图,已知直径为1个单位长度的圆形纸片上的点A与数轴上表示-1的点重合,若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后点A与数轴上的点A′重合,则点A′表示的数为      .

  15.这是一根起点为0的数轴,现有同学将它弯折,如图所示,例如:第一行0,第二行6,第三行21…则虚线上的第10行的数是      .

  三、解答题(共68分)

  16.计算:

  (1)24+(-14)+(-16)+8;

  (2) ;

  (3) ;

  (4)-14-(-5 )× .

  17.化简:

  (1)5a-4b-3a+b;

  (2) .

  18.解方程:

  (1)3x-4(2x+5)=x+4

  (2)2- =x- .

  19.已知多项式A、B、C满足:A+B-C=-4(x2-t-1),且B=- .

  (1)求多项式A;

  (2)若t=- ,求A的值.

  20.有理数a、b、c在数轴上的位置如图:

  (1)用“>”或“<”填空:b+c      0;b-a      0;a+c      0;

  (2)化简|b+c|+|b-a|-|a+c|.

  21.魔术师为大家表演魔术.他请观众想一个数,然后将这个数按以下步骤操作:

  魔术师立刻说出观众想的那个数.

  (1)如果小明想的数是-1,那么他告诉魔术师的结果应该是      ;

  (2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是      ;

  (3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.

  22.某展览馆对学生参观实行优惠,个人票每张6元,团体票每10人45元.

  (1)如果参观的学生人数为37人,至少应付多少元;

  (2)如果参观的学生人数为48人,至少应付多少元;

  (3)如果参观的学生人数是一个两位数,十位数字为a,个位数字为b,用含a、b的代数式表示至少应付多少元?

  23.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.

  (1)为了求得剩余草坪的面积,小明同学想出了两种方法,结果分别如下

  方法①:      .

  方法②:      .

  (2)从小明的两种方法中,你能写出(a-b)2、a2和ab这三个代数式之间的等量关系吗?

  (3)根据(2)题中的等量关系,解决如下问题:若m2+n2=9,mn=4,则求m-n.

  24.甲乙两辆车在一个公路上匀速行驶,为了确定汽车的位置,我们用数轴表示这条公路,并规定向右为正方向,原点o为零千米路标,并作如下约定:位置为正,表示汽车位于零千米的右侧,位置为负,表示汽车位于零千米的左侧,位置为零,表示汽车位于零千米 处.

  (1)根据题意,填写下列表格;

  时间 0 5 7 x

  甲车位置 190 -10

  乙车位置        170 270

  (2)甲乙两车能否相遇?如果相遇,求相遇时的时刻以及在公路上的位置,如果不能相遇,请说明理由;

  (3)甲乙两车能否相距135km?如果能,求相距135km的时刻和位置;如不能,请说明理由.

  初一期中数学试卷答案

  一、选择题(每题2分,共12分)

  1. 的绝对值是(  )

  A. 3 B. -3 C. D.

  考点: 绝对值.

  分析: 计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.

  解答: 解:|- |= .

  故- 的绝对值是 .

  故选:C.

  点评: 此题考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

  2.扬州市某天最高气温8℃,最低气温-1℃,那么这天的日温差是(  )

  A. 7℃ B. 9℃ C. -9℃ D. -7℃

  考点: 有理数的减法.

  分析: 用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数计算即可得解.

  解答: 解:8-(-1)=8+1=9℃.

  故选B.

  点评: 本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.

  3.代数式-7,x,x2y, ,-5a2b3, 中,单项式有(  )个.

  A. 3 B. 4 C. 5 D. 6

  考点: 单项式.

  分析: 根据单项式的定义求解.

  解答: 解:单项式有:-7,x,x2y,-5a2b3,共4个.

  故选B.

  点评: 本题考查了单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.

  4.下列说法中,正确的是(  )

  A. 一个有理数的平方总是正数

  B. 最大的负数是-1

  C. 有理数包括正有理数和负有理数

  D. 没有最大的正数,也没有最小的负数

  考点: 有理数.

  分析: 利用有理数的定义判定即可.

  解答: 解:A、0的平方是0,故本选项错误,

  B、没有最大的负数,故本选项错误,

  C、有理数包括正有理数和负有理数和0,故本选项错误,

  D、没有最大的正数,也没有最小的负数,故本选项正确.

  故选:D.

  点评: 本题主要考查了有理数,解题的关键是熟记有理数的定义.

  5.如图是一个由六个小正方体组成的几何体,每个小正方体的六个面上都写有-1,2,3,-4,5,-6,那么图中所有看不见的面上的数字和是(  )

  A. 9 B. 8 C. -15 D. -13

  考点: 专题:正方体相对两个面上的文字.

  分析: 一个正方体的数字之和是-1,六个正方体的数字之和是-1×6=-6,然后六个正方体的数字之和减去可以得出隐藏的数字之和.

  解答: 解:六个小正方体的数字总和为(-1+2+3-4+5-6)×6=-6,

  图中看得见的数字为-1+2+5-6+3+5+2-6+3-4-1+2+3=7,

  所以图中所有看不见的面上的数字和=-6-7=-13.

  故选D.

  点评: 本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.

  二、填空题(每题2分,共20分)

  6.-1 的相反数是 1  ,倒数是 -  .

  考点: 相反数;倒数.

  分析: 根据相反数与倒数的概念解答即可.

  解答: 解:∵-1 的相反数是1 ,

  ∵-1 =- ,

  ∴-1 倒数是- .

  故答案为:1 ,- .

  点评: 本题考查了相反数与倒数的意义.注意互为相反数的两数和为零,互为倒数的两数积为1.

  7.单项式 的系数是 -  ;次数是 3 .

  考点: 单项式.

  分析: 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.

  解答: 解:根据单项式系数、次数的定义可知:

  单项式 的系数是- ,次数是3.

  点评: 确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.

  8.钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为 6.344×106 .

  考点 : 科学记数法—表示较大的数.

  分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

  解答: 解:6344000=6.344×106.

  故答案为:6.344×106.

  点评: 此题考查科学记数法的.表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

  9.若实数a满足a-2a-1003=0,则2a-4a+5= 2011 .

  考点: 代数式求值.

  专题: 计算题.

  分析: 由题意求出a-2a的值,代入原式计算即可.

  解答: 解:由a-2a-1003=0,得到a-2a=1003,

  则原式=2(a-2a)+5=2006+5=2011,

  故答案为:2011.

  点评: 此题考查了代数式求值,熟练掌握运算法则是解本题的关键.

  10.若x=2是方程 的解,则 的值是 -2 .

  考点: 一元一次方程的解;有理数的乘方.

  专题: 计算题.

  分析: 虽然是关于x的方程,但是含有两个未知数 ,其实质是知道一个未知数的值求另一个未知数的值,最后求得 的值.

  解答: 解:把x=2代入 得:6-4=1-a,解得:a=-1

  把a=-1代入 =(-1)2005+ =-1-1=-2.

  故填-2.

  点评: 本题主要考查的是已知原方程的解,求原方程中未知系数.只需把原方程的解代入原方程,把未知系数当成新方程的未知数求解即可.

  11.初一(1)班原有学生40人,其中有男生a人,开学几天后又转来2名女生,则现在女生占全班的比例为   .

  考点: 列代数式.

  分析: 现在的女生人数为40-a+2=42-a人,全班人数为40+2=42人,根据分数除法的意义列式求得答案即可.

  解答: 解:现在的女生人数为40-a+2=42-a人,全班人数为40+2=42人,

  则现在女生占全班的比例为 .

  故答案为: .

  点评: 此题考查列代数式,找出前后数量的变化是解决问题的关键.

  12.请你做评委:在一堂数学活动课上,在同一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:

  ①小明说:“到表示-1的点距离不大于2的所有的点有5个.”

  ②小亮说:“当m=3时,代数式3x-y-mx+2中不含x项”

  ③小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.”

  ④小彭说:“多项式2x3y-x2y2+25的次数是5是一次三项式.”

  你觉得他们的说法正确的是 ② (填序号)

  考点: 多项式;数轴;绝对值.

  分析: 根据多项式、数轴、绝对值的概念求解.

  解答: 解:①到表示-1的点距离不大于2的所有的点有无数个,原说法错误;

  ②当m=3时,代数式3x-y-mx+2=-y+2,不含x项,该说法正确;

  ③若|a|=3,|b|=2,则a+b的值为±5或±1,原说法错误;

  ④多项式2x3y-x2y2+25是四次三项式,原说法错误.

  正确的为②.

  故答案为:②.

  点评: 本题考查了多项式、数轴、绝对值的知识,掌握各知识点的概念是解答本题的关键.

  13.某商场购进一批衣服,进价为每套240元,若每套以280元的价格销售,每天可销售200套.经调查发现如果每套比原售价降低5元销售,则每天可多销售10套.现若每套降低x元,则每天可获的总利润 -2x2-120x+8000 元.(用含x的代数式表示)(总利润=销售总额-总进价)

  考点: 列代数式.

  分析: 依据利润=每件的获利×件数,列出式子即可解决.

  解答: 解:(280-240-x)(200+ ×10)

  =(40-x)(200+2x)

  =-2x2-120x+8000(元).

  故答案为:-2x2-120x+8000.

  点评: 此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.

  14.如图,已知直径为1个单位长度的圆形纸片上的点A与数轴上表示-1的点重合,若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后点A与数轴上的点A′重合,则点A′表示的数为 π-1 .

  考点: 实数与数轴.

  分析:先求得圆的周长,再用周长减去1即可得出点A′表示的数

  解答: 解:∵圆的直径为1,

  ∴圆的周长为π,

  ∴点A′所表示的数为π-1,

  故答案为:π-1.

  点评: 本题考查了实数与数轴,数轴上两点之间的距离的求法是大数减去小数.

  15.这是一根起点为0的数轴,现有同学将它弯折,如图所示,例如:第一行0,第二行6,第三行21…则虚线上的第10行的数是 378 .

  考点: 规律型:数字的变化类.

  分析: 观察根据排列的规律得到第一行为0,第二行为0加6个数即为6,第三行为从6开始加15个数得到21,第四行为从21开始加24个数即45,…,由此得到后面加的数比前一行加的数多9,由此得到第10行为0+6+(6+9×1)+(6+9×2)+…+(6+9×8).

  解答: 解:∵第一行为0,

  第二行为0+6=6,

  第三行为0+6+15=21,

  第四行为0+6+15+24=45,

  第五行为0+6+15+24+33=78,

  …

  ∴第10行为0+6+(6+9×1)+(6+9×2)+…+(6+9×8)=6×9+9(1+2+3+4+5+6+7+8)=378.

  故答案为:378.

  点评: 此题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.

  三、解答题(共68分)

  16.计算:

  (1)24+(-14)+(-16)+8;

  (2) ;

  (3) ;

  (4)-14-(-5 )× .

  考点: 有理数的混合运算.

  分析: (1)先化简再计算即可;

  (2)将除法变为乘法,再约分计算即可求解;

  (3)直接运用乘法的分配律计算;

  (4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.

  解答: 解:(1)24+(-14)+(-16)+8

  =24-14-16+8

  =32-30

  =2;

  (2)

  =- × ×

  =- ;

  (3)

  = × + ×6- ×0.6

  =1+5-0.5

  =5.5;

  (4)-14-(-5 )×

  =-1+2-8÷|-9+1|

  =-1+2-8÷8

  =-1+2-1

  =0.

  点评: 本题考查的是有理数的运算能力.注意:

  (1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;

  (2)去括号法则:--得+,-+得-,++得+,+-得-.

  17.化简:

  (1)5a-4b-3a+b;

  (2) .

  考点: 整式的加减.

  分析: (1)直接合并同类项即可;

  (2)先去括号,再合并同类项即可.

  解答: 解:(1)原式=(5-3)a+(1-4)b

  =2a-3b;

  (2)原式=x2+ x- -2x+2x2-2

  =3x2- x- .

  点评: 本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.

  18.解方程:

  (1)3x-4(2x+5)=x+4

  (2)2- =x- .

  考点: 解一元一次方程.

  专题: 计算题.

  分析: (1)方程去括号,移项合并,将x系数化为1,即可求出解;

  (2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.

  解答: 解:(1)方程去括号得:3x-8x-20=x+4,

  移项合并得:-6x=24,

  解得:x=-4;

  (2)方程去分母得:12-(x+5)=6x-2(x-1),

  去 括号得:12-x-5=6x-2x+2,

  移项合并得:5x=5,

  解得:x=1.

  点评: 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.

  19.已知多项式A、B、C满足:A+B-C=-4(x2-t-1),且B=- .

  (1)求多项式A;

  (2)若t=- ,求A的值.

  考点: 整式的加减;代数式求值.

  分析: (1)根据已知得出A=C-B-4(x2-t+1),把B、C的值代入,去括号后合并同类项即可;

  (2)把t的值代入求出即可.

  解答: 解:(1)∵A+B-C=-4(x2-t-1),且B=- ,

  ∴A=C-B-4(x2-t+1)

  =2(x2-t-1)+ (x2-t-1)- 4(x2-t-1)

  =2x2-2t-2+ x2- t- -4x2+4t+4

  =- x2+ t+ ;

  (2)当t=- 时,A=- x2+ ×(- )+ =- x2+1.

  点评: 本题考查了整式的混合运算的应用,解此题的关键是求出多项式A的值,难度一般.

  20.有理数a、b、c在数轴上的位置如图:

  (1)用“>”或“<”填空:b+c> 0;b-a > 0;a+c < 0;

  (2)化简|b+c|+|b-a|-|a+c|.

  考点: 数轴.

  分析: (1)先由数轴得出a

  (2)先由数轴得出a

  解答: 解:(1)∵由数轴可得:a

  ∴b+c>0;b-a>0;a+c<0;

  故答案为:>,>,<.

  (2)∵由数轴可得:a

  ∴|b+c|+|b-a|-|a+c|

  =b+c+b-a+(a+c)

  =2b+2c.

  点评: 本题主要考查了数轴,解题的关键是由数轴得出a

  21.魔术师为大家表演魔术.他请观众想一个数,然后将这个数按以下步骤操作:

  魔术师立刻说出观众想的那个数.

  (1)如果小明想的数是-1,那么他告诉魔术师的结果应该是 4 ;

  (2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是 88 ;

  (3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.

  考点: 一元一次方程的应用.

  专题:创新题型.

  分析: (1)利用已知条件,这个数按步骤操作,直接代入即可;

  (2)假设这个数,根据运算步骤,求出结果等于93,得出一元一次方程,即可求出;

  (3)结合(2)中方程,关键是发现运算步骤的规律.

  解答: 解:(1)(-1×3-6)÷3+7=4;

  故填:4;

  (2)设这个数为x,

  (3x-6)÷3+7=93;

  解得:x=88;

  (3)设观众想的数为a. .

  因此,魔术师只要将最终结果减去5,就能得到观众想的数了.

  点评: 此题主要考查了数的运算,以及运算步骤的规律性,题目比较新颖.

  22.某展览馆对学生参观实行优惠,个人票每张6元,团体票每10人45元.

  (1)如果参观的学生人数为37人,至少应付多少元;

  (2)如果参观的学生人数为48人,至少应付多少元;

  (3)如果参观的学生人数是一个两位数,十位数字为a,个位数字为b,用含a、b的代数式表示至少应付多少元?

  考点: 列代数式;有理数的混合运算.

  专题: 分类讨论.

  分析: (1)若参观的学生人数36人,则应买3张团体票,买6张个人票;

  (2)参观的学生人数为48人,分两种情况进行计算,买5张团体票应付225元,买4张团体票,8张个人票应付228元,故至少应付225元;

  (3 )应分类讨论,当0≤b≤7,且为整数时,至少应付(45a+6b)元;当8≤b≤9,且为整数时,至少应付(45a+45)元.

  解答: 解:(1)若参观的学生人数36人,则应付费用:3×45+6×6=171(元)

  (2)参观的学生人数为48人,如买4张团体,8张个人票,应付:4×45+6×8=228(元),

  若买5张团体票,应付:5×45=225<228,∴至少付225元.

  (3)当0≤b≤7,且为整数时,至少应付(45a+6b)元;

  当8≤b≤9,且为整数时,至少应付(45a+45)元.

  点评: 此题考查了根据实际问题列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达,作出最优选择.

  23.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.

  (1)为了求得剩余草坪的面积,小明同学想出了两种方法,结果分别如下

  方法①: S=(a-b)2 .

  方法②: S=a2-2ab+b2 .

  (2)从小明的两种方法中,你能写出(a-b)2、a2和ab这三个代数式之间的等量关系吗?

  (3)根据(2)题中的等量关系,解决如下问题:若m2+n2=9,mn=4,则求m-n.

  考点: 列代数式.

  分析: (1)方法①根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;

  方法②是正方形的面积减去两条道路的面积 ,即可得出剩余草坪的面积;

  (2)根据(1)得出的结论可得出(a-b)2=a2-2ab++b2;

  (3)先把m2+n2=9化成(m-n)2+2mn=9,然后代值计算即可得出m-n的值.

  解答: 解:(1)方法①:草坪的面积S=(a-b)(a-b)=(a-b)2.

  方法②:草坪的面积S=a2-2ab+b2;

  故答案为:S=(a-b)2,S=a2-2ab+b2;

  (2)从小明的两种方法中,可以得到:(a-b)2=a2-2ab++b2;

  (3)∵m2+n2=9,

  ∴(m-n)2+2mn=9,

  ∵mn=4,

  ∴m-n=±1.

  点评: 此题考查了列代数式,关键是读懂题意,找到所求的量的数量关系,表示出矩形的长和宽.

  24.甲乙两辆车在一个公路上匀速行驶,为了确定汽车的位置,我们用数轴表示这条公路,并规定向右为正方向,原点o为零千米路标,并作如下约定:位置为正,表示汽车位于零千米的右侧,位置为负,表示汽车位于零千米的左侧,位置为零,表示汽车位于零千米处.

  (1)根据题意,填写下列表格;

  时间 0 5 7 x

  甲车位置 190 -10  -90   190-4x

  乙 车位置  -80  170 270  -80+50x

  (2)甲乙两车能否相遇?如果相遇,求相遇时的时刻以及在公路上的位置,如果不能相遇,请说明理由;

  (3)甲乙两车能否相距135km?如果能,求相距135km的时刻和位置;如不能,请说明理由.

  考点: 一元一次方程的应用.

  专题: 图表型.

  分析: (1)根据速度=路程÷时间,可求出甲乙两车的速度,从而可填写表格;

  (2)相遇,则两车的位置相等,得出方程,求解即可;

  (3)相距135千米,需要分两种情况, ①乙车在左,甲车在右,②乙车在右,甲车在左,分别得出方程求解即可.

  解答: 解:(1)填表如下:

  时间(h) 0 5 7 x

  甲车位置(km) 190 -10 -90 190-40x

  乙车位置(km) -80 170 270 -80+50x

  (2)由题意得:190-40x=-80+50x,

  解得:x=3,

  190-40×3=70,

  答:相遇时刻为3小时,且位于零千米右侧70km处;

  (3)①190-40x+135=-80+50x,

  解得:x=4.5,

  190-40×4.5=10,-80+50×4.5=145,

  ②190-40x=-80+50x+135,

  解得x=1.5,

  190-40×1.5=130,

  -80+50×1.5=-5.

  答:相距180km的时刻为4.5小时或1.5小时,甲乙两车分别位于零千米左侧10km、右侧145km处,或者甲乙两车分别位于零千米右侧130km、左侧5km处.

  点评: 本题考查了一元一次方程的应用,解答本题的关键是表示出x小时时,甲乙两车的位置,注意利用方程思想的求解,有一定难度.

【初一期中数学试卷答案】相关文章:

初一上册期中数学试卷及参考答案07-04

数学试卷初一答案03-24

初一数学试卷及答案03-24

初一下数学试卷答案03-24

初一下数学试卷及答案03-24

初一秋季学期期中数学试卷07-09

初一数学试卷题带答案03-24

数学试卷及答案01-26

初二期中数学试卷带答案07-04