八年级数学下期末试卷
八年级数学试卷
一、填空题(每小题3分,共24分)
1.当x 时, 在实数范围内有意义.
2.在ABCD中,∠A=70°,则∠C= 度.
3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k= .
4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是 .
5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件 ,使四边形AECF是平行四边形(只填一个即可).
6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是 .
7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= cm.
8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为 .
二、选择题(每小题3分,共24分)
9.下列二次根式中,最简二次根式是( )
A. B. C. D.
10.下列计算正确的是( )
A.2 B. C. D. =﹣3
11.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是( )
A.20 B.10 C.5 D.
12.一次函数y=kx+b的图象如图所示,则k、b的符号( )
A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<0
13.下列命题中,为真命题的是( )
A.有一组邻边相等的四边形是菱形
B.有一个角是直角的平行四边形是矩形
C.有一组对边平行的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:
月用水量(吨) 3 4 5 8
户 数 2 3 4 1
则关于这若干户家庭的月用水量,下列说法错误的是( )
A.平均数是4.6吨 B.中位数是4.5吨
C.众数是4吨 D.调查了10户家庭的月用水量
15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是( )
A. B. C. D.
16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4 cm;④AC=8 cm;⑤S菱形ABCD=80cm,正确的`有( )
A.①②④⑤ B.①②③④ C.①③④⑤ D.①②③④⑤
三、解答题(共72分)
17.(12分)计算:
(1)2
(2) ÷ ﹣2 × +
(3) ﹣( +2)( ﹣2)
18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?( ,结果精确到0.1)
19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.
(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);
(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.
20.(6分)已知:如图,在ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.
21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
(1)设学校这次调查共抽取了n名学生,n= ;
(2)请你补全条形统计图;
(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?
22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.
(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;
(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;
(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.
23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形.
(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?
24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.
(1)求这条直线的解析式;
(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).
①求n的值及直线AD的解析式;
②求△ABD的面积;
③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.
25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.
(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;
小明同学探究此问题的方法是:
过P点作PE⊥DC于E点,PF⊥BC于F点,
根据正方形的性质和角平分线的性质,得出PE=PF,
再证明△PEQ≌△PFB,可得出结论,他的结论应是 ;
(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
【八年级数学下期末试卷】相关文章:
四下数学期末试卷分析03-21
初二下数学期末试卷题目07-09
2016初二下数学期末试卷08-21
初二下册数学期末试卷07-04
初一下册数学期末试卷08-18
八年级下数学答案04-25
八年级数学下册期末试卷08-21
数学下册的期末试卷07-04
五年级下数学期末试卷答案07-10