数学知识点归纳

时间:2023-06-21 11:06:16 炜玲 数学 我要投稿

数学知识点归纳

  在我们的学习时代,大家对知识点应该都不陌生吧?知识点是指某个模块知识的重点、核心内容、关键部分。哪些知识点能够真正帮助到我们呢?以下是小编为大家收集的数学知识点归纳,仅供参考,欢迎大家阅读。

数学知识点归纳

  小学六年级数学知识点归纳

  知识点概念总结

  1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

  2.分数乘法的计算法则:

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

  3.分数乘法意义

  分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

  4.分数乘整数:数形结合、转化化归

  5.倒数:乘积是1的两个数叫做互为倒数。

  6.分数的倒数

  找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。

  7.整数的倒数

  找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是1/12 ,12是1/12的倒数。

  8.小数的倒数:

  普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1

  9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

  10.分数除法:分数除法是分数乘法的逆运算。

  11.分数除法计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

  13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

  14.比和比例:

  比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括: 比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

  所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.

  15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。 比的性质用于化简比。

  比表示两个数相除;只有两个项:比的前项和后项。

  比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

  16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

  17.比和比例的区别

  (1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。 如:a:b 这是比 比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 a:b=3:4 这是比例。

  (2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质: 比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。 比例的性质用于解比例。联系: 比例是由两个相等的比组成。

  18.比和比例的意义

  比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种形式,分数有括号的含义!

  19.比和比例的联系:

  比和比例有着密切联系。 比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。 比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。 如果两个比相等,那么这两

  个比就可以组成比例。成比例的两个比的比值一定相等。

  20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

  21.圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示

  22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

  23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

  圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。 圆的半径或直径决定圆的大小,圆心决定圆的位置。

  24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

  25.圆周率:圆的周长与直径的比值叫做圆周率。 圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。 直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

  26.圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。 一条弧所对的圆周角是圆心角的二分之一。

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

  27.周长计算公式

  (1)已知直径:C=πd

  (2)已知半径:C=2πr

  (3)已知周长:D=c/π

  (4)圆周长的一半:1/2周长(曲线)

  (5)半圆的周长:1/2周长+直径(π÷2+1)

  28.面积计算公式:

  (1)已知半径:S=πr

  (2)已知直径:S=π(d/2)

  (3)已知周长:S=π[c÷(2π)]

  29.百分数与分数的区别 222

  (1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.

  (2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。

  (3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。

  而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.

  (4)百分数不能带单位名称;当分数表示具体数时可带单位名称。

  30.百分数应用

  百分数一般有三种情况: ①100%以上,如:增长率、增产率等。 ②100%以下,如:发芽率、成长率等。 ③刚好100%,如:正确率,合格率等。

  31.百分数的意义

  百分数只可以表示分率,而不能表示具体量,所以不能带单位。百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。

  32.日常应用

  每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又简练。

  知识点扩展

  1.圆的定义

  几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

  轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

  集合说:到定点的距离等于定长的点的集合叫做圆。

  小学六年级数学总复习知识点归纳

  一、 常用的数量关系式

  1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

  5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间作总量÷工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数

  9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 二、小学数学图形计算公式 1、正方形 (C:周长S:面积a:边长)

  周长=边长×4 C=4a 面积=边长×边长S=a×a 2、正方体 (V:体积a:棱长 )

  表面积=棱长×棱长×6S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

  3、长方形( C:周长S:面积a:边长 )

  周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab

  4、长方体 (V:体积s:面积a:长b: 宽h:高)

  (1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh

  5、三角形 (s:面积a:底h:高) 面积=底×高÷2 s=ah÷2

  三角形高=面积 ×2÷底三角形底=面积 ×2÷高 6、平行四边形 (s:面积a:底h:高) 面积=底×高s=ah

  7、梯形 (s:面积a:上底b:下底h:高) 面积=(上底+下底)×高÷2 s=(a+b)× h÷2

  8、圆形 (S:面积C:周长л d=直径r=半径) (1)周长=直径×л=2×л×半径C=лd=2лr (2)面积=半径×半径×л

  9、圆柱体 (v:体积h:高s:底面积r:底面半径c:底面周长) (1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2

  (3)体积=底面积×高

  工10、圆锥体 (v:体积h:高s:底面积r:底面半径)

  体积=底面积×高÷3 11、总数÷总份数=平均数 14、相遇问题

  相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 15、利润与折扣问题 利息=本金×利率×时间

  税后利息=本金×利率×时间×(1-5%)

  三、常用单位换算 1、长度单位换算

  1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米1厘米=10毫米面积单位换算

  1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米

  2、体(容)积单位换算

  1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算

  1吨=1000 千克1千克=1000克1千克=1公斤 人民币单位换算

  1元=10角1角=10分 1元=100分

  3、时间单位换算

  1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月

  平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时

  1时=60分1分=60秒1时=3600秒

  4、基本概念

  第一章 数和数的运算

  一 概念 (一)整数 1 整数的意义

  自然数和0都是整数。 2 自然数

  我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3计数单位

  一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4 数位

  计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除

  整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

  如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

  因为35能被7整除,所以35是7的倍数,7是35的约数。

  一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

  一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

  个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。

  个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

  一个数各位数上的和能被9整除,这个数就能被9整除。

  能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

  能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

  一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

  1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

  每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

  把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数

  几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

  公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。

  当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

  如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。 如果两个数是互质数,它们的最大公约数就是1。

  几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

  3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。

  如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

  (二)小数

  1 小数的意义

  把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

  在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

  2小数的分类

  纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。

  带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。

  有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。

  无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……

  无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏

  循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……

  一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。

  纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……

  混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……

  写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。

  (三)分数

  1 分数的意义

  把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2、分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。

  假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

  带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分

  把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。

  把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 (四)百分数

  1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

  二 方法

  (一)数的读法和写法

  1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

  2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

  4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

  5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

  6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。 7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

  8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

  (二)数的改写

  一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

  1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

  2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。

  3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

  4. 大小比较

  1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

  2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

  3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

  (三)数的互化

  1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

  2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

  3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

  4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

  5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (四)数的整除

  1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

  2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。 3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

  4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。

  (五) 约分和通分

  约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

  通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

  三 性质和规律

  (一)商不变的规律

  商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

  (二)小数的性质

  小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

  (三)小数点位置的移动引起小数大小的变化

  1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……

  2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……

  3. 小数点向左移或者向右移位数不够时,要用“0"补足位。

  (四)分数的基本性质

  分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

  (五)分数与除法的关系

  1. 被除数÷除数= 被除数/除数

  2. 因为零不能作除数,所以分数的分母不能为零。

  3. 被除数 相当于分子,除数相当于分母。

  四 运算的意义

  (一)整数四则运算 1整数加法:

  把两个数合并成一个数的运算叫做加法。

  在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 加数+加数=和一个加数=和-另一个加数 2整数减法:

  已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

  加法和减法互为逆运算。 3整数乘法:

  求几个相同加数的和的简便运算叫做乘法。

  在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。 一个因数× 一个因数 =积一个因数=积÷另一个因数 4 整数除法:

  已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

  在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

  乘法和除法互为逆运算。 在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  被除数÷除数=商 除数=被除数÷商 被除数=商×除数

  (二)小数四则运算

  1. 小数加法:

  小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

  2. 小数减法:

  小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.

  3. 小数乘法:

  小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

  4. 小数除法:

  小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

  5. 乘方:

  求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32

  (三)分数四则运算

  1. 分数加法:

  分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。

  2. 分数减法:

  分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。

  3. 分数乘法:

  分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

  4. 乘积是1的两个数叫做互为倒数。

  5. 分数除法:

  分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。

  (四)运算定律

  1. 加法交换律:

  两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

  2. 加法结合律:

  三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

  3. 乘法交换律:

  两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

  4. 乘法结合律:

  三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

  5. 乘法分配律:

  两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。

  6. 减法的性质:

  从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

  (五)运算法则

  1. 整数加法计算法则:

  相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

  2. 整数减法计算法则:

  相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

  3. 整数乘法计算法则:

  数学乘法知识点归纳

  单元知识点

  1.两位数乘整十数的乘法: 探索因数是整十数的乘法计算,找出计算规律。

  2.两位数乘两位数(不进位):探索两位数乘两位数(不进位)的乘法经历估算与交流算法多样化的过程。

  3.两位数乘两位数(进位) 进一步掌握两位数乘两位数(有进位)的计算方法。并能正确进行估算和计算。解决简单的实际问题。

  4.解决相关的简单实际问题 巩固两位数乘两位数的计算方法,使学生能够正确进行计算,提高计算能力,从而体会数学与实际生活的密切联系,感受到数学在实际生活中的应用。

  找规律

  1.乘数是整十数的乘法计算规律:一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数。

  2.在两位数乘两位数的计算中,让学生经历交流乘法的过程。

  住新房

  1.两位数乘两位数(不进位)的乘法,经历使估算与交流算法多样化的过程。体验算法的多样化和灵活性。

  2.掌握竖式计算的基本方法。注意书写格式要理解对应值要对齐的道理。

  3.准确叙述出竖式计算中每一步的算理。

  电影院

  知识点:

  1.准确叙述出两位数乘两位数(进位)乘法的计算方法。

  2.能正确进行估算和计算,解决实际生活中的问题。

  3.进行计算的过程中,注意乘法进的进位。

  旅游中的数学

  1.租车活动中:渗透列表解决问题的策略思想,了解最省钱的策略是车的座位尽可能坐满,如果不能坐满,空位必须尽可能少。

  2.用餐活动中:应懂得合理选择的重要性。复习应用小数加减法知识。

  3.旅游计算中:收集数据,处理数据。

  初中数学菱形知识点归纳

  菱形

  1、菱形的定义 :有一组邻边相等的平行四边形叫做菱形。

  2、菱形的性质:

  ⑴ 矩形具有平行四边形的一切性质;

  ⑵ 菱形的四条边都相等;

  ⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  ⑷ 菱形是轴对称图形。

  提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,

  可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

  3、菱形的判定方法:

  ⑴ 定义:一组邻边相等的平行四边形是菱形。

  ⑵ 判断方法1:对角线互相垂直的平行四边形是菱形。

  ⑶ 判断方法2:四条边相等的四边形是菱形。

  4、菱形面积的计算:

  菱形面积 = 底×高 = 对角线长乘积的一半 S菱形=1/2×ab(a、b为两条对角线)

  归纳:对角线互相垂直的四边形的面积等于对角线长乘积的一半。

  希望上面对菱形知识点的总结学习,同学们都能很好的掌握,相信同学们一定能很好的参加考试工作。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:

  ①在同一平面

  ②两条数轴

  ③互相垂直

  ④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  ④因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:

  ①系数是整数时取各项最大公约数。

  ②相同字母取最低次幂

  ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

【数学知识点归纳】相关文章:

数学函数知识点归纳07-22

数学圆知识点归纳01-20

数学矩形知识点归纳04-25

数学小数知识点归纳02-08

GRE数学的知识点归纳06-30

数学《质数》知识点归纳03-15

数学重要知识点归纳02-14

高考数学的知识点归纳04-29

数学高考精选知识点归纳11-08

数学知识点归纳03-13