- 相关推荐
六年级下学期数学《比例》知识点吞吐量
在日常过程学习中,看到知识点,都是先收藏再说吧!知识点就是一些常考的内容,或者考试经常出题的地方。哪些知识点能够真正帮助到我们呢?下面是小编精心整理的六年级下学期数学《比例》知识点吞吐量,希望能够帮助到大家。
六年级下学期数学《比例》知识点吞吐量 篇1
知识点一:图像的放大和缩小
理解掌握:把图形按1:n的比缩小,就是把图形的每条边都放大到原来的1/n;
把图形按n:1的比放大,就是把图形的每条边都缩小到原来的n倍。
知识点二:比例的意义
理解掌握:
1、比例:表示两个比相等的式子。任何一个比例都是由两个内项和两个外项组成。
2、比和比例的区别:
(1)比是表示两个数相除的关系。比例是表示两个比相等的关系。
(2)比由两项组成(前项、后项)。比例由四项组成(两个内项、两个外项)。
知识点三:应用比的'含义组成比例
理解掌握:判断两个比能否组成比例,关键要看它们的比值是否相等。若比值相等,则能组成比例;若比值不想等,则不能组成比例。
知识点四:比例的基本性质
理解掌握:比例的基本性质:在比例里,两个外项的积等于两个内项的积。
若a:b=c:d,那么ad=bc。
若用分数表示比a/b=c/d,那么ad=bc。------十字交叉法
知识点五:解比例
理解掌握:解比例的依据是比例的基本性质,已知比例中的任意三项,就可以求出另外一项。
例1:5:8=x:161/9:1/4=x:18
8x=5×164:9=x:18
x=109x=4×18
x=8
知识点六:用比例解应用题
解题方法:审题列出比例等量关系式------设未知数列出比例方程------解比例并检验写答
例1:A、B两种商品的价格比是5:3,如果它们的价格分别上涨了420元后,价格比是6:5。那么A商品原来多少元?解析:本题中告诉我们A、B两种商品涨价前后的价格比,利用比例的基本性质可以得到等量关系是:
(A商品原来的价格+420元):(B商品原来的价格+420元)=6:5
利用比例基本性质,设A商品原来的价格是5x元,B商品原来的价格是3x元
列出比例方程(5x+420):(3x+420)=6:5
(5x+420)×5=(3x+420)×6------比例基本性质
25x+2100=18x+2520------乘法分配率
25x-18x=2520-2100------等式基本性质
x=60
5×60=300元答:A商品原来300元。
知识点七:比例尺的意义
理解掌握:比例尺就是图上距离与实际距离的比。
图上距离是比的前项,实际距离是比的后项,比例尺是一个最简单的整数比。
相关公式:
(1)比例尺=图上距离÷实际距离
(2)图上距离=比例尺×实际距离
(3)实际距离=图上距离÷比例尺
知识点八:比例尺的应用
理解掌握:(1)注意比例尺的前后单位是否统一。一般比例尺的单位是厘米,而题目往往会给出以千米做单位的比例尺。如1:40千米=1:4000000厘米
(2)因为图上距离是比例的前项,实际距离是比例的后项,所以当比例尺的图上距离大于实际距离时,表示设计图纸大于实际物体,如比例尺是10:1(经常在精密仪器、化学领域中出现);当比例尺的图上距离小于实际距离时,表示设计图纸小于实际物体,如比例尺1:100(比如设计一栋教学楼)。
六年级下学期数学《比例》知识点吞吐量 篇2
1、比的意义
(1)两个数相除又叫做两个数的比
(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
7、比和比例的区别
(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示x/y=k(一定)
9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的`量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)
10、判断两种量成正比例还是成反比例的方法:
关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
12、比例尺的分类
(1)数值比例尺和线段比例尺
(2)缩小比例尺和放大比例尺
13、图上距离:
图上距离/实际距离=比例尺
实际距离×比例尺=图上距离
图上距离÷比例尺=实际距离
14、应用比例尺画图的步骤:
(1)写出图的名称、
(2)确定比例尺;
(3)根据比例尺求出图上距离;
(4)画图(画出单位长度)
(5)标出实际距离,写清地点名称
(6)标出比例尺
15、图形的放大与缩小:形状相同,大小不同。
16、用比例解决问题:
根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
17、常见的数量关系式:(成正比例或成反比例)
单价×数量=总价
单产量×数量=总产量
速度×时间=路程
工效×工作时间=工作总量
18、已知图上距离和实际距离可以求比例尺。
已知比例尺和图上距离可以求实际距离。
已知比例尺和实际距离可以求图上距离。
计算时图距和实距单位必须统一。
19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
答:每天播种的公顷数×天数=播种的总公顷数
已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。
六年级下学期数学《比例》知识点吞吐量 篇3
正比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系
正比例的意义
满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例。
显然,若y与x成正比例,则y/x=k(k为常量);反之亦然。
例如:在行程问题中,若速度一定时,则路程与时间成正比例;在工程问题中,若工作效率一定时,则工作总量与工作时间成正比例。
注意:k不能等于0.
正比例和反比例相同与联系相同之处
1. 事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。
3.相对应的两个变数的积或商都是一定的。
相互转化
当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例。
正比例的例子
正方形的周长与边长 (比值4)。
圆的周长与直径 (比值π)。
购买的总价与购买的数量(比值 单价)。
路程的例子:
1.速度一定,路程和时间成正比例。
2.时间一定,路程和速度成正比例。
都是定一个,变一个 。例如aX=Y中,a不变,则 X与Y成正比例。
圆的周长和半径成正比例吗?为什么?
答:∵圆的周长÷圆的半径=2π,∴圆的周长和半径成正比例。
易错的比例:
圆的面积(S):半径(R)=πR
上面这个比例是错误的。它不属于正比例。因为(S:R=πR)因为根据上面所说,比值须是一个不变的量,而比的`前项和后项必须是可以变化的量,如果R变化,那比值也会变化,所以圆的面积与半径不成正比例。
还有一种错误的正比例:圆的面积(S):π=R·R(一定),这是一个错误的比例,因为比值是不变的量,前项与后项应随着一个的变化而变化,而在这里,比值是个固定的量,而π也是一个固定的量,前项无法变化,这个比例就成了一个固定的比例,不符合上面所说的前项和后项必须是可以变化的量。
正比例的要点就是两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。
【六年级下学期数学《比例》知识点吞吐量】相关文章:
六年级数学下学期比例的知识点06-07
六年级数学下学期比例知识点11-13
六年级的数学比例知识点07-01
数学比和比例知识点04-12
六年级数学比例的知识点07-24
六年级数学比例知识点03-31
六年级数学正比例与反比例的知识点01-27
六年级数学下册的知识点:比例知识点01-19
数学六年级上册圆的比例知识点02-18