数学 百文网手机站

北大师版高一数学的含义与表示知识点

时间:2022-01-27 15:48:36 数学 我要投稿

北大师版高一数学集合的含义与表示知识点

  人才源自知识,而知识的获得跟广泛的阅读积累是密不可分的。小编为大家准备了高一数学集合的含义与表示知识点,欢迎阅读与选择!

北大师版高一数学集合的含义与表示知识点

  北大师版高一数学的含义与表示知识点 篇1

  1.集合的概念

  一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集);构成集合的每个对象叫做这个集合的元素(或成员)。集合的元素可以是我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或者一些抽象符号。

  2.集合元素的特征

  由集合概念中的两个关键词“确定的”、“不同的”可以知道集合元素有两大特征性质:

  ⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。

  设集合 给定,若有一具体对象 ,则 要么是 的元素,要么不是 的元素,二者必居

  其一,且只居其一。

  ⑵互异性特征:集合中的元素必须是互不相同的。设集合 给定, 的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。

  3.集合与元素之间的关系

  集合与元素之间只有“属于 ”或“不属于 ”。例如: 是集合 的元素,记作 ,读作“ 属于 ”; 不是集合 的元素,记作 ,读作“ 不属于 ”。

  4.集合的分类

  集合按照元素个数可以分为有限集和无限集。特殊地,不含任何元素的集合叫做空集,记作 。

  5.集合的表示方法

  ⑴列举法是把元素不重复、不计顺序的一一列举出来的方法,非常直观,一目了然。

  ⑵特征性质描述法是用确定的条件描述集合内元素特点的集合表示方法。

  北大师版高一数学的含义与表示知识点 篇2

  1、长度单位:是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。其国际单位是“米”(符号“m”),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。

  2、米:国际单位制中,长度的标准单位是“米”,用符号“m”表示。

  3、分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

  4、厘米:厘米,长度单位。简写(符号)为:cm、

  有关厘米的单位转换:1厘米=10毫米=0、1分米=0、01米=0、00001千米。

  5、毫米:英文缩写MM(或mm、㎜)

  进率关:1毫米=0、1厘米;

  6、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

  以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。

  在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。

  7、不退位减:减法运算中不用向高位借位的减法运算。例:56—22=34。6能够减去2,所以不用向高位5借位。

  8、退位减:减法运算中必须向高位借位的减法运算。例:51—22=39、

  1不能够减去2,所以必须向高位的5借位。

  9、连加:多个数字连续相加叫做连加。例如:28+24+23=85、

  10、连减:多个数字连续相减叫做连减。例如:85—40—26=19、

  11、加减混合:在运算中既有加法又有减法的运算。例如:67—25+28=70。

  12、角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  符号:∠

  13、乘法算式中各数的名称:是指将相同的数加法起来的快捷方式。其运算结果称为积。

  “×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  10(因数)×(乘号)200(因数)=(等于号)2000(积)

  14、1—6的乘法口诀

  1×1=1

  1×2=22×2=4

  1×3=32×3=63×3=9

  1×4=42×4=83×4=124×4=16

  1×5=52×5=103×5=154×5=205×5=25

  1×6=62×6=123×6=184×6=245×6=306×6=36

  15、7——9的乘法口诀

  1×7=72×7=143×7=214×7=285×7=356×7=427×7=49

  1×8=82×8=163×8=244×8=325×8=406×8=487×8=568×8=64

  1×9=92×9=183×9=274×9=365×9=456×9=547×9=638×9=729×9=81

  二年级上册知识点概括总结

  1、角的动态定义

  一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  2、角的种类

  角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  还有许多种角的.关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

  3、乘法的运算定律

  整数的乘法运算满足:交换律,结合律,分配律,消去律。

  随着数学的发展,运算的对象从整数发展为更一般群。

  乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c

  北大师版高一数学的含义与表示知识点 篇3

  一、集合有关概念

  1、集合的含义

  2、集合的中元素的三个特性:

  (1)元素的确定性如:世界上最高的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:XKb1、Com

  非负整数集(即自然数集)记作:N

  正整数集:Nx或N+

  整数集:Z

  有理数集:Q

  实数集:R

  1)列举法:{a,b,c……}

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x—3>2},{x|x—3>2}

  3)语言描述法:例:{不是直角三角形的三角形}

  4)Venn图:

  4、集合的分类:

  (1)有限集含有有限个元素的集合

  (2)无限集含有无限个元素的集合

  (3)空集不含任何元素的集合

  二、集合间的基本关系

  1、“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2、“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2—1=0}B={—1,1}“元素相同则两集合相等”

  即:①任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果A?B,B?C,那么A?C

  ④如果A?B同时B?A那么A=B

  3、不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4、子集个数:

  有n个元素的集合,含有2n个子集,2n—1个真子集,含有2n—1个非空子集,含有2n—1个非空真子集

  三、集合的运算

  运算类型交集并集补集

  定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集、记作AB(读作‘A交B’),即AB={x|xA,且xB}、

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集、记作:AB(读作‘A并B’),即AB={x|xA,或xB})、

  数学的学习方法

  1、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

  2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

  数学一元二次方程知识点

  (1)一元二次方程的定义

  等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

  注意一下几点:

  ①只含有一个未知数;

  ②未知数的最高次数是2;

  ③是整式方程。

  (2)一元二次方程的一般形式

  一般形式:

  ax2+ bx + c = 0(a ≠0)、

  其中,ax2是二次项,a是二次项系数;

  bx是一次项,b是一次项系数;c是常数项。

  (3)一元二次方程的根

  使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定义是解方程过程中验根的依据。

【北大师版高一数学集合的含义与表示知识点】相关文章:

北大师版初一上册数学知识点10-21

北大师版初三政治把握时代坐标的知识点09-09

高等数学集合与函数知识点11-17

北大师版初三政治参与民主政治知识点08-17

高一数学圆的知识点12-07

北大师版初一政治了解经济生活的知识点总结03-29

高一数学下册知识点11-04

高一数学知识点08-08

高一政治征税与纳税的知识点05-29

高一数学知识点提纲09-24