高一生物必修二知识点归纳

时间:2023-06-07 09:54:11 晓丽 生物 我要投稿
  • 相关推荐

高一生物必修二知识点归纳

  在现实学习生活中,说到知识点,大家是不是都习惯性的重视?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。那么,都有哪些知识点呢?下面是小编为大家收集的高一生物必修二知识点归纳,仅供参考,欢迎大家阅读。

高一生物必修二知识点归纳

  高一生物必修二知识点归纳

  一、细胞种类:

  根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞

  二、原核细胞和真核细胞的比较:

  1、原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA不与蛋白质结合,;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。

  2、真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。

  3、原核生物:由原核细胞构成的生物。如:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。

  4、真核生物:由真核细胞构成的生物。如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、粘菌)等。

  三、细胞学说的建立:

  1、1665英国人虎克(RobertHooke)用自己设计与制造的显微镜(放大倍数为40-140倍)观察了软木的薄片,第一次描述了植物细胞的构造,并首次用拉丁文cella(小室)这个词来对细胞命名。

  2、1680荷兰人列文虎克(A.vanLeeuwenhoek),首次观察到活细胞,观察过原生动物、人类精子、鲑鱼的红细胞、牙垢中的细菌等。

  3、19世纪30年代德国人施莱登(MatthiasJacobSchleiden)、施旺(TheodarSchwann)提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。这一学说即"细胞学说(CellTheory)",它揭示了生物体结构的统一性。

  高一生物必修二知识点归纳

  1、遗传学中常用概念及分析

  (1)性状:生物所表现出来的形态特征和生理特性。

  相对性状:一种生物同一种性状的不同表现类型。举例:兔的长毛和短毛;人的卷发和直发等。

  性状分离:杂交后代中,同时出现显性性状和隐性性状的现象。如在DD×dd杂交实验中,杂合F1代自交后形成的F2代同时出现显性性状(DD及Dd)和隐性性状(dd)的现象。

  显性性状:在DD×dd杂交试验中,F1表现出来的.性状;如教材中F1代豌豆表现出高茎,即高茎为显性。决定显性性状的为显性遗传因子(基因),用大写字母表示。如高茎用D表示。

  隐性性状:在DD×dd杂交试验中,F1未显现出来的性状;如教材中F1代豌豆未表现出矮茎,即矮茎为隐性。决定隐性性状的为隐性基因,用小写字母表示,如矮茎用d表示。

  (2)纯合子:遗传因子(基因)组成相同的个体。如DD或dd。其特点纯合子是自交后代全为纯合子,无性状分离现象。

  杂合子:遗传因子(基因)组成不同的个体。如Dd。其特点是杂合子自交后代出现性状分离现象。

  (3)杂交:遗传因子组成不同的个体之间的相交方式。如:DD×dd Dd×dd DD×Dd等。

  自交:遗传因子组成相同的个体之间的相交方式。如:DD×DD Dd×Dd等

  测交:F1(待测个体)与隐性纯合子杂交的方式。如:Dd×dd

  2、常见问题解题方法

  1)如果后代性状分离比为显:隐=3:1,则双亲一定都是杂合子(Dd)。即Dd×Dd 3D_:1dd

  (2)若后代性状分离比为显:隐=1:1,则双亲一定是测交类型。即Dd×dd 1Dd :1dd

  (3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。即DD×DD或DD×Dd或DD×dd

  3、分离定律的实质:减I分裂后期等位基因分离。

  高一生物必修二知识点归纳

  1、两对相对性状杂交试验中的有关结论

  (1)两对相对性状由两对等位基因控制,且两对等位基因分别位于两对同源染色体。

  (2) F1减数分裂产生配子时,等位基因一定分离,非等位基因(位于非同源染色体上的非等位基因)自由组合,且同时发生。

  (3)F2中有16种组合方式,9种基因型,4种表现型,比例9:3:3:1

  注意:上述结论只是符合亲本为YYRR×yyrr,但亲本为YYrr×yyRR,F2中重组类型为10/16,亲本类型为6/16。

  2、常见组合问题

  (1)配子类型问题 如:AaBbCc产生的配子种类数为2x2x2=8种

  (2)基因型类型 如:AaBbCc×AaBBCc,后代基因型数为多少?

  先分解为三个分离定律:

  Aa×Aa后代3种基因型(1AA:2Aa:1aa)Bb×BB后代2种基因型(1BB:1Bb)

  Cc×Cc后代3种基因型(1CC:2Cc:1cc)所以其杂交后代有3x2x3=18种类型。

  (3)表现类型问题 如:AaBbCc×AabbCc,后代表现数为多少?

  先分解为三个分离定律:

  Aa×Aa后代2种表现型 Bb×bb后代2种表现型 Cc×Cc后代2种表现型

  所以其杂交后代有2x2x2=8种表现型。

  3、自由组合定律的实质:减I分裂后期等位基因分离,非等位基因自由组合。

  高一生物必修二知识点归纳

  生态系统的稳定性

  1、概念:生态系统所具有的保持或恢复自身结构和功能相对稳定的能力

  2、生态系统之所以能维持相对稳定,是由于生态系统具有自我调节能力。生态系统自我调节能力的。基础是负反馈。物种数目越多,营养结构越复杂,自我调节能力越大;

  3、生态系统的稳定性具有相对性。当受到大规模干扰或外界压力超过该生态系统自身更新和自我调节能力时,便可能导致生态系统稳定性的破坏、甚至引发系统崩溃。

  4、生物系统的稳定性:包括抵抗力稳定性和恢复力稳定性

  生态系统成分越单纯,结构越简朴抵抗力稳定性越低,反之亦然。草原生态系统恢复力稳定性较强,草地破坏后能恢复。而森林恢复很困难。抵抗力稳定性强的生态系统它的恢复力稳定就弱。留意:生态系统有自我调节的能力。但有一定的限度。保持其稳定性,使人与自然协调发展。

  5、提高生态系统稳定性的措施:在草原上适当栽种防护林,可以有效地防止风沙的侵蚀,提高草原生态系统的稳定性(如图)。再比如避免对森林过量砍伐,控制污染物的排放,等等,都是保护生态系统稳定性的有效措施。

  一方面要控制对生态系统的干扰程度,对生态系统的利用应适度,不应超过生态系统的自我调节能力;

  另一方面对人类利用强度较大的生态系统,应实施相应的物质和能量的投入,保证生态系统内部结构和功能的协调。

  高一生物必修二知识点归纳

  基因的本质

  1.DNA的化学结构:①DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等;②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸;③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,能够得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC;④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。

  2.DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,构成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结构成碱基对,DNA一条链上的`碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。

  3.DNA的特性:①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性;②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目);③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。

  4.碱基互补配对原则在碱基含量计算中的应用:①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%;②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数;③在双链DNA分子中,一条链中的不互补的两碱基含量之和的比值(A+TG+C)与其在互补链中的比值和在整个分子中的比值都是一样的。

  5.DNA的复制:①时期:有丝分裂间期和减数第一次分裂的间期;②场所:主要在细胞核中;③条件:a、模板:亲代DNA的两条母链;b、原料:四种脱氧核苷酸为;c、能量:(ATP);d、一系列的酶。缺少其中任何一种,DNA复制都无法进行;④过程:a、解旋:首先DNA分子利用细胞带给的能量,在解旋酶的作用下,把两条扭成螺旋的双链解开,这个过程称为解旋;b、合成子链:然后,以解开的每段链(母链)为模板,以周围环境中的脱氧核苷酸为原料,在有关酶的作用下,按照碱基互补配对原则合成与母链互补的子链。随的解旋过程的进行,新合成的子链不断地延长,同时每条子链与其对应的母链互相盘绕成螺旋结构,c、构成新的DNA分子;⑤特点:边解旋边复制,半保留复制。⑥结果:一个DNA分子复制一次构成两个完全相同的DNA分子;⑦好处:使亲代的遗传信息传给子代,从而使前后代持续了必须的连续性;⑧准确复制的原因:DNA之所以能够自我复制,一是因为它具有独特的双螺旋结构,能为复制带给模板;二是因为它的碱基互补配对潜力,能够使复制准确无误。

  6.DNA复制的计算规律:每次复制的子代DNA中各有一条链是其上一代DNA分子中的,即有一半被保留。一个DNA分子复制n次则构成2n个DNA,但内含最初母链的DNA分子有2个,可构成22n条脱氧核苷酸链,内含最初脱氧核苷酸链的有2条。子代DNA和亲代DNA相同,假设x为所求脱氧核苷酸在母链的数量,构成新的DNA所需要游离的脱氧核苷酸数为子代DNA中所求脱氧核苷酸总数2nx减去所求脱氧核苷酸在最初母链的数量x。

  7.核酸种类的决定:首先根据有T无U,来确定该核酸是不是DNA,又由于双链DNA遵循碱基互补配对原则:A=T,G=C,单链DNA不遵循碱基互补配对原则,来确定是双链DNA还是单链DNA。

  1.基因分离定律:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1。

  2.基因分离定律的实质是:在杂合子的细胞中,位于一对同源染色体,具有必须的独立性,生物体在进行减数分裂构成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。

  3.基因型是性状表现的内存因素,而表现型则是基因型的表现形式。表现型=基因型+环境条件。

  4.基因自由组合定律的实质是:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在进行减数分裂构成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。在基因的自由组合定律的范围内,有n对等位基因的个体产生的配子最多可能有2n种。

  细胞增殖

  1.减数分裂的结果是,新产生的生殖细胞中的染色体数目比原始的生殖细胞的减少了一半。

  2.减数分裂过程中联会的同源染色体彼此分开,说明染色体具必须的独立性;同源的两个染色体移向哪一极是随机的,则不同对的染色体(非同源染色体)间可进行自由组合。

  3.减数分裂过程中染色体数目的减半发生在减数第一次分裂中。

  4.一个精原细胞经过减数分裂,构成四个精细胞,精细胞再经过复杂的变化构成精子。

  5.一个卵原细胞经过减数分裂,只构成一个卵细胞。

  6.对于进行有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异,都是十分重要的

  人类遗传病

  1.决定顺序及方法

  ①决定是显性还是隐性遗传病方法:看患者总数,如果患者很多连续每代都有即为显性遗传。如果患者数量很少,只有某代或隔代个别有患者即为隐性遗传。(无中生有为隐性,有中生无为显性)

  ②先决定是常染色体遗传病还是X染色体遗传病。方法:看患者性别数量,如果男女患者数量基本相同即为常染色体遗传病。如果男女患者的数量明显不等即为X染色体遗传病。(个性:如果男患者数量远多于女患者即决定为X染色体隐性遗传。反之,显性)

  2.常见单基因遗传病分类

  ①伴X染色体隐性遗传病:红绿色盲、血友病、进行性肌营养不良(假肥大型)。

  发病特点:男患者多于女患者;男患者将至病基因透过女儿传给他的外孙(交叉遗传)

  ②伴X染色体显性遗传病:抗维生素D性佝偻病。

  发病特点:女患者多于男患者

  ③常染色体显性遗传病:多指、并指、软骨发育不全发病特点:患者多,多代连续得病。

  ④常染色体隐性遗传病:白化病、先天聋哑、苯丙酮尿症发病特点:患者少,个别代有患者,一般不连续。遇常染色体类型,只推测基因,而与X、Y无关

  3.多基因遗传病:唇裂、无脑儿、原发性高血压、青少年糖尿病。

  4.染色体异常病:21三体(患者多了一条21号染色体)、性腺发育不良症(患者缺少一条X染色体)。

  5.优生措施:①禁止近亲结婚。(直系血亲与三代以内旁系血亲禁止结婚);②进行遗传咨询,体检、对将来患病分析;③提倡“适龄生育”;④产前诊断。

  染色体变异

  1.染色体组的概念及特点:①由合子发育来的个体,细胞中内含几个染色体组,就叫几倍体;②而由配子直接发育来的,不管内含几个染色组,都只能叫单倍体。

  2.染色体组数目的决定:①细胞中同种形态的染色体有几条,细胞内就内含几个染色体组;②根据基因型决定细胞中的染色体数目,根据细胞的基因型确定控制每一性状的基因出现的次数,该次数就等于染色体组数;③根据染色体数目和染色体形态数确定染色体数目。染色体组数=细胞内染色体数目染色体形态数。

  高一生物必修二知识点归纳

  一、核酸的种类

  细胞生物含两种核酸:DNA和RNA病毒只内含一种核酸:DNA或RNA

  核酸包括两大类:一类是脱氧核糖核酸(DNA);一类是核糖核酸(RNA)。

  二、核酸的结构

  1、核酸是由核苷酸连接而成的长链(CHONP)。DNA的基本单位脱氧核糖核苷酸,RNA的基本单位核糖核苷酸。核酸初步水解成许多核苷酸。基本组成单位—核苷酸(核苷酸由一分子五碳糖、一分子磷酸、一分子含氮碱基组成)。根据五碳糖的不同,能够将核苷酸分为脱氧核糖核苷酸(简称脱氧核苷酸)和核糖核苷酸。

  2、DNA由两条脱氧核苷酸链构成。RNA由一条核糖核苷酸连构成。

  3、核酸中的相关计算:

  (1)若是在内含DNA和RNA的生物体中,则碱基种类为5种;核苷酸种类为8种。

  (2)DNA的碱基种类为4种;脱氧核糖核苷酸种类为4种。

  (3)RNA的碱基种类为4种;核糖核苷酸种类为4种。

  三、核酸的功能:

  核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。

  核酸在细胞中的分布——观察核酸在细胞中的分布:材料:人的口腔上皮细胞

  试剂:甲基绿、吡罗红混合染色剂

  原理:DNA主要分布在细胞核内,RNA大部分存在于细胞质中。甲基绿使DNA呈绿色,吡罗红使RNA呈现红色。盐酸能够改变细胞膜的通透性,加速染色剂进入细胞,同时使染色质中的DNA与蛋白质分离。

  结论:真核细胞的DNA主要分布在细胞核中。线粒体、叶绿体内内含少量的DNA。RNA主要分布在细胞质中。

  高一生物必修二知识点归纳

  基因工程简介

  (1)基因工程的概念

  标准概念:在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组细胞在受体细胞内表达,产生出人类所需要的基因产物.

  通俗概念:按照人们的意愿,把一种生物的个别基因复制出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状.

  (2)基因操作的工具

  A.基因的剪刀——限制性内切酶(简称限制酶).

  ①分布:主要在微生物中.

  ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点.

  ③结果:产生黏性未端(碱基互补配对).

  B.基因的针线——DNA连接酶.

  ①连接的部位:磷酸二酯键,不是氢键.

  ②结果:两个相同的黏性未端的连接.

  C.基困的运输工具——运载体

  ①作用:将外源基因送入受体细胞.

  ②具备的条件:

  a、能在宿主细胞内复制并稳定地保存

  b、具有多个限制酶切点.

  c、有某些标记基因.

  ③种类:质粒、噬菌体和动植物病毒.

  ④质粒的特点:质粒是基因工程中最常用的运载体.

  (3)基因操作的基本步骤

  A.提取目的基因

  目的基因概念:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等.

  提取途径:

  B.目的基因与运载体结合

  用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒)

  C.将目的基因导入受体细胞

  常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞

  D.目的基因检测与表达

  检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒.

  表达:受体细胞表现出特定性状,说明目的基因完成了表达过程.如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等.

  (4)基因工程的成果和发展前景 A.基因工程与医药卫生B.基因工程与农牧业、食品工业

  C.基因工程与环境保护

  记忆点:

  1. 作为运载体必须具备的特点是:能够在宿主细胞中复制并稳定地保存;具有多个限制酶切点,以便与外源基因连接;具有某些标记基因,便于进行筛选.质粒是基因工程最常用的运载体,它存在于许多细菌以及酵母菌等生物中,是能够自主复制的很小的环状DNA分子.

  2.基因工程的一般步骤包括:①提取目的基因 ②目的基因与运载体结合 ③将目的基因导入受体细胞 ④目的基因的检测和表达.

  3.重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程.

  4.区别和理解常用的运载体和常用的受体细胞,目前常用的运载体有:质粒、噬菌体、动植物病毒等,目前常用的受体细胞有大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和动植物细胞等.

  5.基因诊断是用放射性同位素、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,鉴定被检测标本的遗传信息,达到检测疾病的目的.

  6.基因治疗是把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的.

  高一生物必修二知识点归纳

  细胞质遗传

  ①细胞质遗传的特点:母系遗传(原因:受精卵中的细胞质几乎全部来自母细胞);后代没有一定的分离比(原因:生殖细胞在减数分裂时,细胞质中的遗传物质随机地、不均等地分配到子细胞中去).

  ②细胞质遗传的物质基础:在细胞质内存在着DNA分子,这些DNA分子主要位于线粒体和叶绿体中,可以控制一些性状.

  记忆点:

  1.卵细胞中含有大量的细胞质,而精子中只含有极少量的细胞质,这就是说受精卵中的细胞质几乎全部来自卵细胞,这样,受细胞质内遗传物质控制的性状实际上是由卵细胞传给子代,因此子代总表现出母本的性状.

  2.细胞质遗传的主要特点是:母系遗传;后代不出现一定的分离比.细胞质遗传特点形成的原因:受精卵中的细胞质几乎全部来自卵细胞;减数分裂时,细胞质中的遗传物质随机地、不均等地分配到卵细胞中.细胞质遗传的物质基础是:叶绿体、线粒体等细胞质结构中的DNA.

  3.细胞核遗传和细胞质遗传各自都有相对的独立性.这是因为,尽管在细胞质中找不到染色体一样的结构,但质基因和核基因一样,可以自我复制,可以通过转录和翻译控制蛋白质的合成,也就是说,都具有稳定性、连续性、变异性和独立性.但细胞核遗传和细胞质遗传又相互影响,很多情况是核质互作的结果.

  高一生物必修二知识点归纳

  第二章 基因和染色体的关系

  第一节 减数分裂

  一、减数分裂的概念

  进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。

  (注:体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂一次,新产生的细胞中的染色体数目与体细胞相同。)

  二、减数分裂的过程

  1、精子的形成过程:精巢(哺乳动物称睾丸)

  减数第一次分裂

  间期:染色体复制(包括DNA复制和蛋白质的合成)。

  前期:同源染色体两两配对(称联会),形成四分体。

  四分体中的非姐妹染色单体之间常常交叉互换。

  中期:同源染色体成对排列在赤道板上(两侧)。

  后期:同源染色体分离;非同源染色体自由组合。

  末期:细胞质分裂,形成2个子细胞。

  减数第二次分裂(无同源染色体)

  前期:染色体排列散乱。

  中期:每条染色体的着丝粒都排列在细胞中央的赤道板上。

  后期:姐妹染色单体分开,成为两条子染色体。并分别移向细胞两极。

  末期:细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。

  2、卵细胞的形成过程:卵巢

  三、精子与卵细胞的形成过程的比较

  四、注意:

  (1)同源染色体:

  ①形态、大小基本相同;

  ②一条来自父方,一条来自母方。

  (2)精原细胞和卵原细胞的染色体数目与体细胞相同。属于体细胞,通过有丝分裂的方式增殖,但它们又可以进行减数分裂形成生殖细胞。

  (3)减数分裂过程中染色体数目减半发生在减数第一次分裂,原因是同源染色体分离并进入不同的子细胞。所以减数第二次分裂过程中无同源染色体。

  (4)减数分裂过程中染色体和DNA的变化规律

  (5)减数分裂形成子细胞种类:

  假设某生物的体细胞中含n对同源染色体,则:

  它的精(卵)原细胞进行减数分裂可形成2n种精子(卵细胞);

  它的1个精原细胞进行减数分裂形成2种精子。它的1个卵原细胞进行减数分裂形成1种卵细胞。

  五、受精作用的特点和意义

  特点: 受精作用是精子和卵细胞相互识别、融合成为受精卵的过程。精子的头部进入卵细胞,尾部留在外面,不久精子的细胞核就和卵细胞的细胞核融合,使受精卵中染色体的数目又恢复到体细胞的数目,其中有一半来自精子,另一半来自卵细胞。

  意义:减数分裂和受精作用对于维持生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异具有重要的作用。

  注意:若细胞质为不均等分裂,则为卵原细胞的减Ⅰ或减Ⅱ的后期。

  第二节 基因在染色体上

  一、萨顿假说:基因和染色体行为存在明显的平行关系。

  二、孟德尔遗传规律的现代解释

  1、基因的分离定律:杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代,这就是孟德尔的分离规律。

  2、基因的自由组合定律:具有两对(或更多对)相对性状的亲本进行杂交,在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这就是自由组合规律的实质。也就是说,一对等位基因与另一对等位基因的分离与组合互不干扰,各自独立地分配到配子中。

  第三节 伴性遗传

  一、概念:遗传控制基因位于性染色体上,因而总是与性别相关联。

  二、XY型性别决定方式:

  染色体组成(n对):

  雄性:n-1对常染色体 + XY

  雌性:n-1对常染色体 + --

  性别比:一般 1:1

  常见生物:全部哺乳动物、大多雌雄异体的植物,多数昆虫、一些鱼类和两栖类。

  三、三种伴性遗传的特点:

  (1)伴X隐性遗传的特点:

  ① 男 >女

  ②隔代遗传(交叉遗传)

  ③ 母病子必病,女病父必病

  (2)伴X显性遗传的特点:

  ① 女>男

  ② 连续发病

  ③ 父病女必病,子病母必病

  (3)伴Y遗传的特点:

  ①男病女不病

  ②父→子→孙

  附:常见遗传病类型(要记住):

  伴X隐:色盲、血友病

  伴X显:抗维生素D佝偻病

  常隐:先天性聋哑、白化病

  常显:多(并)指

  高一生物必修二知识点归纳

  1.细胞膜的主要成分:蛋白质、脂质(和少量的糖类)

  (各种膜所含蛋白质、脂质的比例与膜的功能有关,功能越复杂的细胞膜,蛋白质的种类和数量越多)

  2.细胞膜的功能:

  ①将细胞与外界环境隔开(以保障细胞内部环境的相对稳定);

  ②控制物质进出细胞(物质能否通过细胞膜,并不是取决于分子的大小,而是根据细胞生命活动的需要);

  ③进行细胞间的信息交流。

  3.细胞间信息交流的方式多种多样,常见的3种方式:

  ①细胞分泌的化学物质如激素,随血液运输到达全身各处,与靶细胞的细胞膜表面的受体结合,将信息传递给靶细胞;

  ②相邻两个细胞的细胞膜接触,信息从一个细胞传递给另一个细胞(如精子和卵细胞之间的识别和结合);

  ③相邻两个细胞之间形成通道,携带信息的物质通过通道进入另一个细胞(如高等绿色植物细胞之间通过胞间连丝相互连接,也有信息交流的作用)

  4.细胞间的信息交流,大多与细胞膜的结构和功能有关。

  5.制备纯净的细胞膜常用的材料:应选用人和哺乳动物成熟的红细胞,原因是:因为人和其他哺乳动物成熟的红细胞中没有细胞核和众多的细胞器;制备的方法:将选取的材料放入清水中,由于细胞内的浓度大于外界溶液浓度,细胞将吸水涨破,再用离心的方法获得纯净的细胞膜。

  6.癌细胞的恶性增殖和转移与癌细胞膜成分的改变有关。

  细胞癌变的指标之一是细胞膜成分发生改变,产生甲胎蛋白(AFP)、癌胚抗原(CEA)等物质超过正常值

  7.植物细胞壁的主要成分:纤维素和果胶;功能:对植物细胞有支持和保护的作用。

  8.细胞质包括细胞器和细胞质基质。

  细胞质基质的成分:水、无机盐、脂质、糖类、氨基酸和核苷酸等,还有很多酶。

  功能:细胞质基质是活细胞进行新陈代谢的主要场所,细胞质基质为新陈代谢的进行提供所需要的物质和一定的环境条件,如提供ATP、核苷酸、氨基酸等。

  9.分离各种细胞器的方法:差速离心法。

  10.线粒体内膜向内折叠形成“嵴”,增大细胞内膜面积;在线粒体的内膜、基质中含有与有氧呼吸有关的酶,分别是有氧呼吸第三、二阶段的场所,生物体95%的能量来自线粒体,又叫“动力车间”。

  11.叶绿体只存在于植物的绿色细胞中。扁平的椭球形或球形,双层膜结构。含少量的DNA、RNA。在类囊体薄膜(基粒)上有色素和与光合作用光反应有关的酶,是光反应场所;在基质中含有与光合作用暗反应有关的酶,是暗反应场所。由圆饼状的囊状结构堆叠而成基粒,增大膜面积。

  12.线粒体和叶绿体的相同点:

  ①具有双层膜结构

  ②都含少量的DNA和RNA,具有遗传的相对独立性

  ③都能产生ATP,都属于能量转换器。

  13.内质网:在结构上内连核膜,外连细胞膜;功能:①增大细胞内的膜面积②是细胞内蛋白质合成和加工,以及脂质合成的车间(内质网是蛋白质空间结构形成的场所)

  14.核糖体:无膜结构,是合成蛋白质的场所。

  附着在内质网上的核糖体合成的是胞外蛋白(即分泌蛋白如消化酶、胰岛素、生长激素、抗体等);游离的核糖体合成的是胞内蛋白(如呼吸氧化酶、血红蛋白等)。

  15.高尔基体:主要是对来自内质网的蛋白质进行加工,分类,包装,运输。(动植物细胞共有的细胞器,但功能不同:植物:与细胞壁的形成有关;动物:与细胞分泌物的形成有关)

  16.中心体:存在于动物和某些低等植物(如衣藻、团藻等)中。

  无膜结构,由垂直的两个中心粒及周围物质组成,与细胞的有丝分裂有关。

  17.液泡:单层膜,成熟的植物有中央大液泡。功能:贮藏(营养、色素等)、保持细胞形态

  18.溶酶体:消化车间,内含许多水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒病菌。

  19.与分泌蛋白合成有关的细胞器有:核糖体、内质网、高尔基体、线粒体;

  与分泌蛋白合成有关的膜性细胞器有:内质网、高尔基体、线粒体;

  与分泌蛋白的合成和分泌有关的结构有:核糖体、内质网、高尔基体、线粒体、细胞膜

  植物细胞特有的结构:细胞壁、叶绿体、液泡(植物根尖分生区细胞不含有的细胞器:叶绿体、大液泡)

  判断低等植物细胞的依据:既有细胞壁、叶绿体或液泡,又有中心体

  具双层膜的结构:线粒体、叶绿体、核膜(具双层膜的细胞器:线粒体、叶绿体)

  单层膜的细胞器:内质网、高尔基体、液泡、溶酶体

  无膜结构(不含磷脂分子)的细胞器:中心体、核糖体

  产生ATP的结构:叶绿体、线粒体、细胞质基质(产生ATP的细胞器:叶绿体、线粒体)

  植物根尖(分生区)细胞产生ATP的场所:线粒体、细胞质基质

  产生水的细胞器:线粒体、叶绿体、核糖体(有水参与反应的细胞器:线粒体、叶绿体等)

  含有核酸的细胞器:线粒体、叶绿体、核糖体(核糖体中只有RNA,且含RNA最多)

  与主动运输有关的细胞器:核糖体(合成载体)、线粒体(产生能量)

  与细胞分裂有关的细胞器:核糖体、中心体、高尔基体、线粒体

  能发生碱基互补配对的结构:线粒体、叶绿体、核糖体、(细胞核)

  含有色素的细胞器:叶绿体、液泡、(有色体中只含类胡萝卜素)储藏细胞营养物质的细胞器:液泡

  与细胞壁的形成有关的细胞器:高尔基体;可合成糖类的细胞器:叶绿体、高尔基体

  在光镜下可见的细胞结构:细胞壁、细胞膜、叶绿体、线粒体、液泡、细胞板、染色体

  (核糖体的结构太小,光镜下看不见)

  20.细胞功能的差异,主要是由细胞器的种类和数量决定的。

  21.蛋白质合成场所是核糖体;蛋白质空间结构的形成场所是内质网;成熟蛋白质的形成场所是高尔基体。

  22.分泌蛋白合成和运输的途径:核糖体—→内质网—→高尔基体—→细胞膜

  23.生物膜的转化中心是内质网。

  可直接转化的膜:内质网膜和核膜、内质网膜和细胞膜、内质网膜和线粒体膜;

  可间接转化的膜(以囊泡形式转化的膜):内质网膜和高尔基体膜、高尔基体膜和细胞膜。

  24.生物膜系统的组成:细胞膜、核膜、细胞器膜等共同构成(也包括分泌蛋白形成过程中的囊泡)

  25.生物膜在组成成分和结构相似,在结构和功能上紧密联系。

  26.生物膜系统的功能:①细胞膜不仅使细胞具有一个相对稳定的内部环境,同时在细胞与外部环境进行物质运输、能量转换和信息传递的过程中起着决定性作用②广阔的膜面积为多种酶提供了大量的附着位点③细胞内的生物膜把各种细胞器分隔开,使得细胞内能同时进行多种反应,而不会互相干扰,保证了细胞生命活动高效、有序地进行。

  27.研究生物膜的意义:①在工业上,模拟生物膜进行海水淡化、污水处理②在医学上,用人工合成的膜材料代替病变器官(如用于治疗尿毒症的透析型人工肾,当病人的血液流经人工肾时,血液透析膜能把病人血液中的代谢废物透析掉,让干净的血液返回病人体内)③在农业上,研究生物膜寻找改善农作物品质的新途径。(运用的原理都是细胞膜的选择透过性)

  28.将海水稀释用于无土栽培的设想变为现实的重要意义:节约淡水资源(或利用海水资源);如用这种稀释的海水栽培植物,应考虑的主要问题有:①稀释的比例②稀释后所含离子的种类和数量是否满足蔬菜生长的需要。

  29.健那绿染液是专一性染线粒体的活细胞染料,可使活细胞中的线粒体呈现蓝绿色,而细胞质接近无色。

  30.细胞核的结构:包括核膜(双层膜)、核仁(与某种RNA的合成以及核糖体的形成有关)、染色质。

  (细胞核是细胞结构中最重要的部分)细胞核功能:是遗传信息库,是细胞代谢和遗传的控制中心

  31.核孔的作用:实现核质之间频繁的物质交换和信息交流(通过核孔进入细胞质的物质:mRNA;通过核孔进入细胞核的物质:DNA聚合酶、解旋酶等。通过核孔进行物质交换时经过的膜结构为0层

  而葡萄糖和氨基酸等物质进出细胞核必须通过核膜,运输方式是主动运输,需经过2层膜)

  32.染色体的主要成分:DNA和蛋白质;染色质是容易被碱性染料(龙胆紫溶液、醋酸洋红液、甲基绿等)染成深色的物质。染色体与染色质的关系是同样的物质在细胞不同时期的两种存在状态。

  33.除了高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等极少数细胞外,真核细胞都有细胞核。

  哺乳动物成熟的红细胞、植物的筛管细胞中没有细胞核;

  高一生物必修二知识点归纳

  第1节 DNA是主要的遗传物质

  一、1928年格里菲思的肺炎双球菌的转化实验:

  1、肺炎双球菌有两种类型类型:

  ●S型细菌:菌落光滑,菌体有夹膜,有毒性

  ●R型细菌:菌落粗糙,菌体无夹膜,无毒性

  2、实验过程(看书)

  3、实验证明:无毒性的R型活细菌与被加热杀死的有毒性的S型细菌混合后,转化为有毒性的S型活细菌。这种性状的转化是可以遗传的。

  推论(格里菲思):在第四组实验中,已经被加热杀死S型细菌中,必然含有某种促成这一转化的活性物质-“转化因子”。

  二、1944年艾弗里的实验:

  1、实验过程:

  2、实验证明:DNA才是R型细菌产生稳定遗传变化的物质。

  (即:DNA是遗传物质,蛋白质等不是遗传物质)

  三、减数分裂的概念

  减数分裂是进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。

  (注:体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂一次,新产生的细胞中的染色体数目与体细胞相同。)

  四、减数分裂的过程

  精子的形成过程:精巢(哺乳动物称睾丸)

  减数第一次分裂

  间期:染色体复制(包括DNA复制和蛋白质的合成)。

  前期:同源染色体两两配对(称联会),形成四分体。

  四分体中的非姐妹染色单体之间常常发生对等片段的互换。

  中期:同源染色体成对排列在赤道板上(两侧)。

  后期:同源染色体分离;非同源染色体自由组合。

  末期:细胞质分裂,形成2个子细胞。

【高一生物必修二知识点归纳】相关文章:

必修二生物知识点归纳11-30

高考生物必修二知识点归纳01-19

高一必修二英语知识点归纳12-01

高一数学必修二知识点归纳08-05

高一英语必修二必备知识点归纳12-01

高一必修二必备化学知识点归纳12-01

高一必修二政治必备知识点归纳12-01

高一生物必修1知识点的归纳01-26

高一必修生物知识要点归纳11-30