小学数学应用题综合训练
1. 一个四位数除以119余96,除以120余80。求这四位数。
2. 有四个不同的自然数,其中任意两个数之和是2的倍数,任意三个数的和是3的倍数,求满足条件的最小的四个自然数。
3. 在一环形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇。甲、乙环行一周各需要多少分钟?
4. 甲、乙沿同一公路相向而行,甲的速度是乙的1。5倍。已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?
5. 甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山。他们两人下山的速度都是各自上山速度的`2倍。甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰。求从山顶到山脚的距离。
6. 一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总数(含一名司机和两名售票员)的1/7,第二站下车的乘客是车上总人数的1/6,。第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了。已知途中没有人上车,问从起点出发时,车上有多少名乘客?
7. 有三块草地,面积分别是4亩、8亩、10亩。草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。问第三块草地可供50头牛吃几周?
8. B地在A,C两地之间。甲从B地到A地去,出发后1小时,乙从B地出发到C地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从B地出发骑车去追赶甲和乙。已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出发到最终赶回B地所用的时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?
9. 一把小刀售价3元。如果小明买了这把小刀,那么小明与小强的钱数之比是2:5;如果小强买了这把小刀,那么两人的钱数之比是8:13。小明原来有多少元钱?
10. 环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发。甲每分钟跑120米,乙每分钟跑100米,两人都是每跑200米停下来休息1分钟,那么甲第一次追上乙需要多少分钟?
【小学数学应用题综合训练】相关文章:
6.小学数学应用题