小学知识

小学五年级应用题

时间:2023-07-20 16:30:27 松涛 小学知识 我要投稿
  • 相关推荐

小学五年级应用题

  在学习和工作的日常里,我们最离不开的就是试题了,借助试题可以检测考试者对某方面知识或技能的掌握程度。你知道什么样的试题才是规范的吗?以下是小编帮大家整理的小学五年级应用题,欢迎大家分享。

  小学五年级应用题 1

  1.快车和慢车同时从两个城市相对开出,2.5小时后相遇。快车每小时行42千米,慢车每小时行35千米。两个城市相距多少千米?

  2.甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?

  3.甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?

  4.两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?

  5.甲乙两人合做一批零件。甲每小时做124个,乙每小时做136个。他们合做了8小时,超额完成120个。他们原来打算合做多少个零件?

  6.上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。客船开出4小时与货船相遇。货船每小时行18千米,客船每小时行27千米。两港相距多远?

  答案:

  1、(42+35)×2.5=192.5(千米)

  2、(18+22)×30=1200

  3、(50+40)×3+25=295(千米)

  4、没相遇。(60+80)×4=560(千米) 628-560=68(千米)

  5、(124+136)×8-120=1960(个)

  6、18×3+(18+27)×4=234(千米)

  小学五年级应用题 2

  例1:东方小学六年级同学分两个组修补图书。第一组28人,平均每人修补图书15本;第二组22人,一共修补图书280本。全班平均每人修补图书多少本?

  要求全班平均每人修补图书多少本,需要知道全班修补图书的总本数和全班的总人数。

  (15×28+280)÷(28+22)=14本

  例2:有水果糖5千克,每千克2.4元;奶糖4千克,每千克3.2元;软糖11千克,每千克4.2元。将这些糖混合成什锦糖。这种糖每千克多少元?

  要求什锦糖每千克多少元,要先出这几种糖的总价和总重量最后求得平均数,即每千克什锦糖的价钱。

  (2.4×5+3.2×4+4.2×11)÷(5+4+11)=3.55元

  例3、要挖一条长1455米的水渠,已经挖了3天,平均每天挖285米,余下的每天挖300米。这条水渠平均每天挖多少米?

  已知水渠的总长度,平均每天挖多少米,就要先求出一共挖了多少天。

  1455÷(3+(1455-285×3)÷300)=291米

  例4、小华的期中考试成绩在外语成绩宣布前,他四门功课的平均分是90分。外语成绩宣布后,他的平均分数下降了2分。小华外语成绩是多少分?

  解法一:先求出四门功课的总分,再求出一门功课的的总分,然后求得外语成绩。

  (90–2)×5–90×4=80分

  例5、甲乙丙三人在银行存款,丙的存款是甲乙两人存款的平均数的1.5倍,甲乙两人存款的和是2400元。甲乙丙三人平均每人存款多少元?

  要求甲乙丙三人平均每人存款多少元,先要求得三人存款的总数。

  (2400÷2×1.5+2400)÷3=1400元

  例6、甲种酒每千克30元,乙种酒每千克24元。现在把甲种酒13千克与乙种酒8千克混合卖出,当剩余1千克时正好获得成本,每千克混合酒售价多少元?

  要求每千克混合酒售价多少元,要先求得两种酒的总价钱和两种酒的总千克数。因为当剩余1千克时正好获得成本,所以在总千克数中要减去1千克。

  (30×13+24×8)÷(13+8–1)=29.1元

  例7、甲乙丙三人各拿出相等的钱去买同样的图书。分配时,甲要22本,乙要23本,丙要30本。因此,丙还给甲13.5元,丙还要还给乙多少元?

  先求买来图书如果平均分,每人应得多少本,甲少得了多少本,从而求得每本图书多少元。

  1. 平均分,每人应得多少本

  (22+23+30)÷3=25本

  2. 甲少得了多少本

  25–22=3本

  3. 乙少得了多少本

  25–23=2本

  4. 每本图书多少元

  13.5÷3=4.5元

  5. 丙应还给乙多少元

  4.5×2=9元

  13.5÷[(22+23+30)÷3–22]×[(22+23+30)÷3–23]=9元

  例8、小荣家住山南,小方家住山北。山南的山路长269米,山北的路长370米。小荣从家里出发去小方家,上坡时每分钟走16米,下坡时每分钟走24米。求小荣往返一次的平均速度。

  在同样的路程中,由于是下坡的不同,去时的上坡,返回时变成了下坡;去时的下坡,回来时成了上坡,因此,所用的时间也不同。要求往返一次的平均速度,需要先求得往返的总路程和总时间。

  1、往返的总路程

  (260+370)×2=1260米

  2、往返的总时间

  (260+370) ÷16+(260+370)÷24=65.625分

  3、往返平均速度

  1260÷65.625=19.2米

  (260+370)×2÷[(260+370) ÷16+(260+370)÷24]=19.2米

  小学五年级应用题 3

  【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。

  例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?

  解 甲班人数=(98+6)÷2=52(人)

  乙班人数=(98-6)÷2=46(人)

  答:甲班有52人,乙班有46人。

  例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

  解 长=(18+2)÷2=10(厘米)

  宽=(18-2)÷2=8(厘米)

  长方形的面积 =10×8=80(平方厘米)

  答:长方形的面积为80平方厘米。

  例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

  解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知

  甲袋化肥重量=(22+2)÷2=12(千克)

  丙袋化肥重量=(22-2)÷2=10(千克)

  乙袋化肥重量=32-12=20(千克)

  答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

  例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?

  解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此

  甲车筐数=(97+14×2+3)÷2=64(筐)

  乙车筐数=97-64=33(筐)

  答:甲车原来装苹果64筐,乙车原来装苹果33筐。

  4 、和倍问题

  【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

  【数量关系】 总和 ÷(几倍+1)=较小的数

  总和 - 较小的数 = 较大的数

  较小的数 ×几倍 = 较大的数

  【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。

  例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?

  解 (1)杏树有多少棵? 248÷(3+1)=62(棵)

  (2)桃树有多少棵? 62×3=186(棵)

  答:杏树有62棵,桃树有186棵。

  例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?

  解 (1)西库存粮数=480÷(1.4+1)=200(吨)

  (2)东库存粮数=480-200=280(吨)

  答:东库存粮280吨,西库存粮200吨。

  例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?

  解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,

  那么,几天以后甲站的车辆数减少为

  (52+32)÷(2+1)=28(辆)

  所求天数为 (52-28)÷(28-24)=6(天)

  答:6天以后乙站车辆数是甲站的2倍。

  例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?

  解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。

  因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;

  又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;

  小学五年级应用题 4

  1.12个人拿了8把铁锹去挖花池,采取歇人不歇马的办法一共干了6小时,平均每人挖了几小时?

  2.春节张阿姨用若干块糖招待小朋友,开始去了12个小朋友,正好平均每人8块;还没等分,又去了几个小朋友,结果平均每人6块正好分完,后来去了几个小朋友?`

  率提高,19天完成了剩余的任务,前后平均每天加工多少个机件?

  4.某车间计划12天生产180台潜水泵,由于计划不周,结果推迟3天完成任务。平均每天比原计划少生产几台?

  5.某车间计划12天生产一批潜水泵,由于计划不周,平均每天比原计划少生产3台,推迟两天完成任务,这批水泵共多少台?

  6.某车间计划四月份生产2400个机件,实际时间少用5天,却超额完成了任务的25%。平均每天比原计划多生产多少个机件?

  7.甲乙丙三同学共买了15本练习册,当时甲付了12本的钱,乙付了3本的钱,丙没付钱。因为三人要的本数相同,回家后乙又给了甲0.3元,丙也给了甲应给的钱数,甲共收回多少钱?

  8.金瑟往返于相距36里的东西两地,由东地去西地每小时走7.2里,从西地回东地比来时少用一小时,他往返的平均速度是多少?

  9.玉琴从甲地去相距36里的乙地,每小时行7.2里;由乙地回甲地的

  10.赵兵骑自行车去某地,一天平均每小时行36里。已知他上午平均每小时行40里,骑了3小时就休息了;下午平均每小时行33里,他下午骑了几小时?

  答案仅供参考:

  1.①6812=4(小时)

  答:平均每人挖了4小时。

  2.①8126-12=4(个)

  ②12(86-1)=4(个)

  答:后来去了4个小朋友。

  答:总平均每天加工24个。

  4.①18012-180(12+3)=3(台)

  答:平均每天少生产3台。

  5.①312[(12+ 2) 2]=252(台)

  ②3122(12+2)=252(台)

  答:这批潜水泵共252台。

  6.①2400(1+25%) (30-5)-(240030)

  =40(个)

  ②2400(30-5)(1+25%)-(240030)

  =40(个)

  答:平均每天比原计划多生产机件40个。

  7.①0.3(153-3)(12-153)=1.05(元)

  ②0.3+0.3(153-3)(153)=1.05(元)

  答:甲共收回1.05元。

  8.①362[367. 2 +(367.2+1)]=8(里)

  ②362(367.2 2-1)=8(里)

  答:来回平均每小时行8里。

  答:往返平均每小时行8里。

  10.①(40-33)3 (36-33)-3=4(小时)

  ②(40-36)3(36-33)=4(小时)

  答:他下午骑了4小时。