小学辅导 百分网手机站

小学数学应用题(4)

时间:2018-03-31 11:12:58 小学辅导 我要投稿

2016年小学数学应用题大全

  例1

  修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

  解

  由条件知,公路总长不变。

  原已修长度∶总长度=1∶(1+3)=1∶4=3∶12

  现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

  比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300÷(4-3)×12=3600(米)

  答:这条公路总长3600米。

  例2

  张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?

  解

  做题效率一定,做题数量与做题时间成正比例关系

  设91分钟可以做X应用题则有28∶4=91∶X

  28X=91×4X=91×4÷28X=13

  答:91分钟可以做13道应用题。

  例3

  孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

  解

  书的页数一定,每天看的页数与需要的天数成反比例关系

  设X天可以看完,就有24∶36=X∶15

  36X=24×15X=10

  答:10天就可以看完。

  17、按比例分配问题

  【含义】

  所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

  【数量关系】

  从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和

  【解题思路和方法】

  先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

  例1

  学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?

  解

  总份数为47+48+45=140

  一班植树560×47/140=188(棵)

  二班植树560×48/140=192(棵)

  三班植树560×45/140=180(棵)

  答:一、二、三班分别植树188棵、192棵、180棵。

  例2

  用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米?

  解

  3+4+5=1260×3/12=15(厘米)

  60×4/12=20(厘米)

  60×5/12=25(厘米)

  答:三角形三条边的长分别是15厘米、20厘米、25厘米。

  例3

  从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

  解

  如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到

  1/2∶1/3∶1/9=9∶6∶2

  9+6+2=1717×9/17=9

  17×6/17=617×2/17=2

  答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。

  例4

  某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?

  解

  80÷(12-8)×(8+12+21)=820(人)

  答:三个车间一共820人。

  18、百分数问题

  【含义】

  百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。

  在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。

  【数量关系】

  掌握“百分数”、“标准量”“比较量”三者之间的数量关系:

  百分数=比较量÷标准量

  标准量=比较量÷百分数

  【解题思路和方法】

  一般有三种基本类型:

  (1)求一个数是另一个数的百分之几;

  (2)已知一个数,求它的百分之几是多少;

  (3)已知一个数的百分之几是多少,求这个数。

  例1

  仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?

  解

  (1)用去的占720÷(720+6480)=10%

  (2)剩下的占6480÷(720+6480)=90%

  答:用去了10%,剩下90%。

  例2

  红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?

  解

  本题中女职工人数为标准量,男职工比女职工少的人数是比较量所以(525-420)÷525=0.2=20%

  或者1-420÷525=0.2=20%

  答:男职工人数比女职工少20%。

  例3

  红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几?

  解

  本题中以男职工人数为标准量,女职工比男职工多的人数为比较量,因此

  (525-420)÷420=0.25=25%

  或者525÷420-1=0.25=25%

  答:女职工人数比男职工多25%。

  例4

  红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几?

  解

  (1)男职工占420÷(420+525)=0.444=44.4%

  (2)女职工占525÷(420+525)=0.556=55.6%

  答:男职工占全厂职工总数的44.4%,女职工占55.6%。

  19、“牛吃草”问题

  【含义】

  “牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。

  【数量关系】

  草总量=原有草量+草每天生长量×天数

  【解题思路和方法】

  解这类题的关键是求出草每天的生长量。

  例1

  一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完?

  解

  草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。求“多少头牛5天可以把草吃完”,就是说5天内的草总量要5天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:

  (1)求草每天的生长量

  因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以

  1×10×20=原有草量+20天内生长量

  同理1×15×10=原有草量+10天内生长量

  由此可知(20-10)天内草的生长量为

  1×10×20-1×15×10=50

  因此,草每天的生长量为50÷(20-10)=5

  (2)求原有草量

  原有草量=10天内总草量-10内生长量=1×15×10-5×10=100

  (3)求5天内草总量

  5天内草总量=原有草量+5天内生长量=100+5×5=125

  (4)求多少头牛5天吃完草

  因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。

  因此5天吃完草需要牛的头数125÷5=25(头)

  答:需要5头牛5天可以把草吃完。

  例2

  一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘

  水,要10小时才能淘完。求17人几小时可以淘完?

  解

  这是一道变相的“牛吃草”问题。与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。设每人每小时淘水量为1,按以下步骤计算:

  (1)求每小时进水量

  因为,3小时内的总水量=1×12×3=原有水量+3小时进水量

  10小时内的总水量=1×5×10=原有水量+10小时进水量

  所以,(10-3)小时内的进水量为1×5×10-1×12×3=14

  因此,每小时的进水量为14÷(10-3)=2

  (2)求淘水前原有水量

  原有水量=1×12×3-3小时进水量=36-2×3=30

  (3)求17人几小时淘完

  17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17-2),所以17人淘完水的时间是

  30÷(17-2)=2(小时)

  答:17人2小时可以淘完水。

  20、鸡兔同笼问题

  【含义】

  这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

  【数量关系】

  第一鸡兔同笼问题:

  假设全都是鸡,则有

  兔数=(实际脚数-2×鸡兔总数)÷(4-2)

  假设全都是兔,则有

  鸡数=(4×鸡兔总数-实际脚数)÷(4-2)

  第二鸡兔同笼问题:

  假设全都是鸡,则有

  兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)

  假设全都是兔,则有

  鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)

  【解题思路和方法】

  解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。

  例1

  长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?

  解

  假设35只全为兔,则

  鸡数=(4×35-94)÷(4-2)=23(只)

  兔数=35-23=12(只)

  也可以先假设35只全为鸡,则

  兔数=(94-2×35)÷(4-2)=12(只)

  鸡数=35-12=23(只)

  答:有鸡23只,有兔12只。

  例2

  2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?

  解

  此题实际上是改头换面的“鸡兔同笼”问题。“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。假设16亩全都是菠菜,则有

  白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)

  答:白菜地有10亩。

  例3

  李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。问作业本和日记本各买了多少本?

  解

  此题可以变通为“鸡兔同笼”问题。假设45本全都是日记本,则有