小升初

小升初数学必考知识点

时间:2024-07-18 09:30:42 赛赛 小升初 我要投稿

关于小升初数学必考知识点大全

  在日常的学习中,说起知识点,应该没有人不熟悉吧?知识点是指某个模块知识的重点、核心内容、关键部分。掌握知识点是我们提高成绩的关键!以下是小编为大家收集的关于小升初数学必考知识点,欢迎阅读,希望大家能够喜欢。

关于小升初数学必考知识点大全

  小升初数学必考知识点 篇1

  一、意义

  1、小数乘整数:求几个相同加数的和的简便运算。

  如:3.2+3.2+3.2+3.2+3.2改用乘法算式表示为(3.2×5),这个乘法算式表示的意义是(5个3.2是多少)

  2、小数乘小数:就是求这个数的几分之几是多少。

  如:1.5×0.8就是求1.5的十分之八是多少。

  二、算理

  1、计算方法:按整数乘法的法则算出积,再点小数点;点小数点时,要看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  小数乘法计算法则简记为:一算,二看,三数,四点,五去;

  2、注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

  3、乘法的验算有很多种方法:可以交换两个因数的`位置再算一遍;可以用估算的方法;还可以用计算器验算。

  4、积与因数的关系:

  一个数(0除外)乘大于1的数,积比原来的数大;

  一个数(0除外)乘小于1的数,积比原来的数小。

  用字母表示:

  a×b=c(a不等于0)

  b>1,a>c

  b=1,a=c

  b<1,a

  三、积的近似数

  1、求近似数的方法有三种:四舍五入法、进一法、去尾法,在这一单元主要用四舍五入法。

  步骤如下:先按照小数乘小数的方法算出积,再按题目的要求和“四舍五入”法取近似值。

  注意:表示近似数时小数末尾的0不能随便去掉。

  如:0.599保留两位小数是( )

  2、通常情况下,人民币的最小单位是分,以元为单位的小数表示“分”的是百分位。

  四、混合运算

  小数四则运算顺序跟整数是一样的。

  整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

  关于乘法分配律的简算是这一部分的重点和难点。

  案例:

  0.25×4.78×4

  0.65×202

  2.4×1.5-2.4

  2.4×0.6+2.6×0.6

  12.5×32×0.25

  小升初数学必考知识点 篇2

  一.整数和小数

  1.最小的一位数是1,最小的自然数是0

  2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

  3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……

  4.小数的分类:小数 有限小数

  无限循环小数

  无限小数

  无限不循环小数

  5.整数和小数都是按照十进制计数法写出的数。

  6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

  7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……

  小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

  二.数的整除

  1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

  2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

  3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

  一个数约数的个数是有限的',最小的约数是1,最大的约数是它本身。

  4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

  5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

  质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。

  合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。

  最小的质数是2,最小的合数是4

  1~20以内的质数有:2、3、5、7、11、13、17、19

  1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

  6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

  能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

  小升初数学必考知识点 篇3

  一、算术

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:a + b = b + a

  3、乘法交换律:a × b = b × a

  4、乘法结合律:a × b × c = a ×(b × c)

  5、乘法分配律:a × b + a × c = a × b + c

  6、除法的性质:a ÷ b ÷ c = a ÷(b × c)

  7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

  8、有余数的除法:被除数=商×除数+余数

  二、方程、代数与等式

  等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  方程式:含有未知数的等式叫方程式。

  一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。

  代数:代数就是用字母代替数。

  代数式:用字母表示的式子叫做代数式。如:3x =ab+c

  三、分数

  分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

  分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  分数乘整数,用分数的.分子和整数相乘的积作分子,分母不变。

  分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

  分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

  分数除以整数(0除外),等于分数乘以这个整数的倒数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

  分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

  真分数:分子比分母小的分数叫做真分数。

  假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

  带分数:把假分数写成整数和真分数的形式,叫做带分数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  四、体积和表面积

  三角形的面积=底×高÷2。公式S= a×h÷2

  正方形的面积=边长×边长公式S= a2

  长方形的面积=长×宽公式S= a×b

  平行四边形的面积=底×高公式S= a×h

  梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

  正方体的表面积=棱长×棱长×6公式:S=6a2

  长方体的体积=长×宽×高公式:V = abh

  长方体(或正方体)的体积=底面积×高公式:V = abh

  正方体的体积=棱长×棱长×棱长公式:V = a3

  圆的周长=直径×π公式:L=πd=2πr

  圆的面积=半径×半径×π公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  五、数量关系计算公式

  单价×数量=总价2、单产量×数量=总产量

  速度×时间=路程4、工效×时间=工作总量

  加数+加数=和一个加数=和+另一个加数

  被减数-减数=差减数=被减数-差被减数=减数+差

  因数×因数=积一个因数=积÷另一个因数

  被除数÷除数=商除数=被除数÷商被除数=商×除数

  小升初数学必考知识点 篇4

  (一)数的读法和写法

  1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个亿或万字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

  2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

  3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作点,小数部分从左向右顺次读出每一位数位上的数字。

  4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

  5. 分数的读法:读分数时,先读分母再读分之然后读分子,分子和分母按照整数的读法来读。

  6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

  7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

  8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号%来表示。

  (二)数的改写

  一个较大的多位数,为了读写方便,常常把它改写成用万或亿作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

  1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

  2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。

  3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

  4. 大小比较

  1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的'数相同,就看下一位,哪一位上的数大那个数就大。

  2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大

  3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

  (三)数的互化

  1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

  2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

  3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

  4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

  5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

  (四)数的整除

  1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

  2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

  3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

  4. 成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

  (五)约分和通分

  约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

  通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

  小升初数学必考知识点 篇5

  1、知识点概述

  分数应用题是研究数量之间份数关系的典型应用题,包括三种类型:求一个数是另一个数的几分之几;求一个数的几分之几是多少;已知一个数的几分之几是多少,求这个数。

  分数应用题一方面是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的.对应是解题的关键.

  2、关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,例如a是b的几分之几,就把数b看作单位“1”.在几个量中,弄清哪一个是单位“1”很重要,否则容易出错误.而百分数应用题中所涉及的百分数,只是分母是100的分数,因而计算的方法和分数应用题是一样的,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系。

  3、怎样找准分数应用题中单位“1”

  (1)部分数和总数

  在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

  例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

  解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

  (2)两种数量比较

  分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

  例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),

  解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

  小升初数学必考知识点 篇6

  1、除数是整数的小数除法计算法则:

  除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  2、除数是小数的小数除法计算法则:

  除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。

  3、在小数除法中的.发现:

  ①当除数大于1时,商小于被除数。如:3.5÷5=0.7

  ②当除数小于1时,商大于被除数。如:3.5÷0.5=7

  4、小数除法的验算方法:

  ①商×除数=被除数(通用)

  ②被除数÷商=除数

  5、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。

  6、循环小数问题:

  小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135等。

【小升初数学必考知识点】相关文章:

小升初数学必考知识点参考02-07

小升初科学必考知识点,小升初科学08-31

长沙小升初数学数的整除必考知识点汇总09-09

小升初语文必考知识点梳理02-13

小升初人教版语文必考知识点06-07

小升初数学四则运算必考知识点09-04

小升初必考的综合知识06-26

关于小升初数学整数知识点06-08

关于如何攻克小升初奥数必考的四大知识点08-30