小升初

小升初数学复习知识点整理

时间:2023-07-13 08:55:39 满全 小升初 我要投稿
  • 相关推荐

关于小升初数学复习知识点整理

  在学习中,大家对知识点应该都不陌生吧?知识点就是学习的重点。掌握知识点有助于大家更好的学习。以下是小编整理的关于小升初数学复习知识点整理,欢迎大家借鉴与参考,希望对大家有所帮助。

关于小升初数学复习知识点整理

  什么叫做单项式和多项式?

  不含加、减运算的整式,叫做单项式。特殊的,单独一个数或一个字母多项式。例如:4x+7,3x2+5,6x2+7x+2等都是多项式。

  约数倍数:

  (1)最大公约最小公倍数

  (2)约数个数决定法则 (小升初常考内容)

  质数合数:

  (1)质数、合数的概念和判断

  (2)分解质因数(重点)

  余数问题:

  (1)带余除式的理解和运用;

  (2)同余的性质和运用;

  (3)中国剩余定理奇偶问题:

  (1)奇偶与四则运算;

  (2)奇偶性质在实际解题过程中的应用完全平方数:

  (1)完全平方数的判断和性质

  (2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

  整除问题:

  (1)数的整除的特征和性质 (小升初分班常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  这四个问题我们需要掌握到什么样的程度?

  从近几年的小升初来看,虽然一些重点中学对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张小升初分班试卷的完成应该是能取得很好的成绩的。对此,给出小升初学生建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。

  几何面积基本思路:

  在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。

  常用方法:

  1.连辅助线方法

  2.利用等底等高的两个三角形面积相等。

  3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

  4.利用特殊规律

  ①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)

  ②梯形对角线连线后,两腰部分面积相等。

  ③圆的面积占外接正方形面积的78.5%。

  立体图形基本思路

  名称图形特征表面积体积

  长方体8个顶点;6个面;相对的面相等;12条棱;相对的棱相等;S=2(ab+ah+bh)V=abh=Sh

  正方体8个顶点;6个面;所有面相等;12条棱;所有棱相等;S=6a2V=a3

  圆柱体上下两底是平行且相等的圆;侧面展开后是长方形;S=S侧+2S底

  S侧=ChV=Sh

  圆锥体下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离;S=S侧+S底

  S侧=rlV=Sh

  球体圆心到圆周上任意一点的距离是球的半径。S=4r2V=r3

  求最大公约数基本方法:

  1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

  2、短除法:先找公有的约数,然后相乘。

  3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

  公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

  12的倍数有:12、24、36、48……;

  18的倍数有:18、36、54、72……;

  那么12和18的公倍数有:36、72、108……;

  那么12和18最小的公倍数是36,记作[12,18]=36。

  小升初数学知识点集合

  一、算术

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:a + b = b + a

  3、乘法交换律:a × b = b × a

  4、乘法结合律:a × b × c = a ×(b × c)

  5、乘法分配律:a × b + a × c = a ×(b + c)

  6、除法的性质:a ÷ b ÷ c = a ÷(b × c)

  7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

  8、有余数的除法: 被除数=商×除数+余数

  二、方程、代数与等式

  等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  方程式:含有未知数的等式叫方程式。

  一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。

  代数: 代数就是用字母代替数。

  代数式:用字母表示的式子叫做代数式。如:3x =ab+c

  三、分数

  分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

  分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

  分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

  分数除以整数(0除外),等于分数乘以这个整数的倒数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

  分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

  真分数:分子比分母小的分数叫做真分数。

  假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

  带分数:把假分数写成整数和真分数的形式,叫做带分数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  四、体积和表面积

  三角形的面积=底×高÷2。

  公式 S= a×h÷2

  正方形的面积=边长×边长

  公式 S= a2

  长方形的面积=长×宽

  公式 S= a×b

  平行四边形的面积=底×高

  公式 S= a×h

  梯形的面积=(上底+下底)×高÷2

  公式 S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的表面积=(长×宽+长×高+宽×高 ) ×2

  公式:S=(a×b+a×c+b×c)×2

  正方体的表面积=棱长×棱长×6

  公式: S=6a2

  长方体的体积=长×宽×高

  公式:V = abh

  长方体(或正方体)的体积=底面积×高

  公式:V = abh

  正方体的体积=棱长×棱长×棱长

  公式:V = a3

  圆的周长=直径×π

  公式:L=πd=2πr

  圆的面积=半径×半径×π

  公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

  公式:S=ch=πdh=2πrh

  圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

  公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。

  公式:V=Sh

  圆锥的体积=1/3底面×积高。

  公式:V=1/3Sh

  五、数量关系计算公式

  1、单价×数量=总价

  2、单产量×数量=总产量

  3、速度×时间=路程

  4、工效×时间=工作总量

  5、加数+加数=和

  6、一个加数=和+另一个加数

  7、被减数-减数=差

  8、减数=被减数-差

  9、被减数=减数+差

  10、因数×因数=积

  11、一个因数=积÷另一个因数

  12、被除数÷除数=商

  13、除数=被除数÷商

  14、被除数=商×除数

  六、长度单位:

  1公里=1千米

  1千米=1000米

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  七、面积单位:

  1平方千米=100公顷

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方厘米=100平方毫米

  1亩=666.666平方米。

  八、体积单位

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方厘米=1000立方毫米

  1升=1立方分米=1000毫升

  1毫升=1立方厘米