小升初

小升初奥数知识

时间:2024-09-04 22:09:50 小升初 我要投稿

小升初奥数知识汇总

小升初奥数知识汇总1

小升初奥数知识汇总1

  小升初政策一日三变,但傻子都知道,好的学校,绝对喜欢收揽好的学生。学习这件事不会因某个时代的政策调整就该淡出人们的视野。小升初想要获得好的学校录取学生应做到以下几点,我教了多年奥数,也改了多年中高考试卷,所以只谈谈数学方面。在现有的小升初体系中,在学校书本方面学生应毫无推脱理由的'学精通以下知识:

小升初奥数知识汇总

  1、基本四则运算(整数、分数、小数、百分数)

  2、计算能力综合(各类巧算)

  3、质数合数、因数倍数

  4、一元一次方程(含整数、分数、小数、百分数、比例的方程)

  5、方程解经典应用题

  6、分数、百分数基础

  7、分数应用题

  8、比和比例

  9、行程问题(相遇、追及、火车过桥、流水行船等)

  10、平面几何(矩形、三角形、平行四边形、梯形、圆、多边形面积及周长等)

  11、立体几何(正方体、长方体、圆柱、圆锥体积、容积及表面积等)

  12、平均数问题

  13、工程问题

  14、经济问题

  15、浓度问题

  16、其他(时钟日期问题、位置与方向、数学广角等)

  上述内容80%左右都将在五六年级这两年学习,所以简单来说,小学一到四年级大部分时间都在学一些基本的四则运算规则及入门级别的平面几何知识。而目前大多数将要升五年级的学生连最基本的计算定律都还未熟练掌握,令人汗颜。

小升初奥数知识汇总2

  五年级下学期是小升初前的最后一个学期,对于整个小学阶段的数学学习起着至关重要的作用,只有这一关过好了,才可能在小升初的备考中游刃有余。所以这学期的奥数学习应该有更强的针对性,针对自己的实际情况和目标选择合适的班型。

  1、继续学习五年级下半学期的华数知识。

  这里的数论和方程的方法是目前北京市小升初考试的重要考点。学习新课时应该选择一本经典的教材,仁华课本非常不错,它是一套很完整、成熟的教材,也是目前选用最多的一本教材,几乎涵盖了全部的五年级奥数重点,拿下仁华课本可以打下很好的基础。

  2、多做专题的练习。

  五年级是接触专题最多的时期,小学阶段的重要知识点和难点也都集中在这个阶段。其中数论、行程问题、排列组合是重中之重,如果这几个专题掌握的不好,想上一个理想的中学是非常困难的。做专题练习也不能光看做了多少道题,要保证练一道会一道,真正的理解并掌握所做的题目,日积月累,几个重点难点也就不再是老大难问题了。

  3、多做真题。

  真题的练习包括历年的竞赛真题和小升初考试真题。做真题可以使自己更好的了解近几年的考试方向和考试的`重点,有助于在平时的学习中找到突破口,集中力量学好考试中最常见的专题。

  4、巩固基础知识。

  由于还有半年就要转入小升初的复习阶段,所以五年级之前的奥数基础内容一定要掌握好。之前的奥数内容以应用题、计算为主。对于基本应用题建议利用方程的方法求解,可以达到事半功倍的效果。计算问题需要对基本的简算方法了如指掌,因为这些方法也是以后分数计算和综合混合运算的基础。

小升初奥数知识汇总3

  一、同余的定义:

  ①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

  ②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。

  二、同余的性质:

  ①自身性:a≡a(mod m);

  ②对称性:若a≡b(mod m),则b≡a(mod m);

  ③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);

  ④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);

  ⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);

  ⑥乘方性:若a≡b(mod m),则an≡bn(mod m);

  ⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);

  三、关于乘方的预备知识:

  ①若A=a×b,则MA=Ma×b=(Ma)b

  ②若B=c+d则MB=Mc+d=Mc×Md

  四、被3、9、11除后的余数特征

  ①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);

  ②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);

  五、费尔马小定理:

  如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。

  余数及其应用

  基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0

  余数的性质:

  ①余数小于除数。

  ②若a、b除以c的余数相同,则c|a-b或c|b-a。

  ③a与b的和除以c的余数等于a除以c的余数加上b除以c的'余数的和除以c的余数。

  ④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。

小升初奥数知识汇总4

  在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关。已知多组物体数量比与物体数量和,求各组物体数量的问题,也称之为按比例分配问题.对于两组以上物体的分配问题也可以通过类似方法建立各组的分配数与总数的数量关系。在解答这类应用题时,我们需要对题中各个量之间的关系做出正确的判断。

  比和比例问题是一类与数量之间的正、反比例关系相关的应用题。它包括以下几个主要内容:

  (1)两个数相除又叫做两个数的比,表示两个比相等的式子叫做比例,组成比例的四个数叫做比例的项,比例中两个外项的积等于两个内项的积叫比例的基本性质;

  (2)两个以上的数的比叫做连比,连比满足比例的'基本性质,也就是a:b:c=na: nb: nc(n≠O);

  (3)如果两种相关联的量x、y,可以写成 =k,其中k是一个定值,那么称x、y为成正比例的量;

  (4)如果两种相关联的量x、y,可以写成x×y=k,其中k是一个定值,那么称x、y为成反比例的量。

小升初奥数知识汇总5

  知识点

  在日常生活中,我们去商场的时候,一般都会有电梯乘坐,在小学奥数中,电梯问题也作为一个专题来讨论研究,我们在复习中应当努力探究其奥秘。

  电梯问题其实是复杂行程问题中的一类。有三点需要注意:一是电梯裸露出来的级数始终一样,即可见级数不变;二是无论人在电梯上是顺行,还是逆行,最终合走的都是电梯的可见级数;三是在同一个人上下往返的情况下,符合流水行程的速度关系,即

  顺行速度=正常行走速度+扶梯运行速度

  逆行速度=正常行走速度-扶梯运行速度

  与流水行船不同的是,自动扶梯上的行走速度有两种度量:一种是“单位时间运动了多少米”;一种是“单位时间走了多少级台阶”。这两种速度看似形同,实则不等。拿流水行程问题作比较,“单位时间运动了多少米”对应的是流水行程问题中的`“船只顺(逆)水速度”;而“单位时间走了多少级台阶”对应的是“船只静水速度”。一般奥数题目涉及自动扶梯的问题中更多的只出现后一种速度,即“单位时间走了多少级台阶”,所以处理数量关系的时候要非常小心,理清了各种数量关系,自动扶梯上的行程问题会变得非常简单。

小升初奥数知识汇总6

  年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。

  年龄问题的三个基本特征:

  ①两个人的年龄差是不变的;

  ②两个人的年龄是同时增加或者同时减少的;

  ③两个人的年龄的倍数是发生变化的;

  解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键。

  例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍?

  ⑴ 父子年龄的差是多少?

  5418 = 36(岁)

  ⑵ 几年前父亲年龄比儿子年龄大几倍?

  7 - 1 = 6

  ⑶ 几年前儿子多少岁?

  366 = 6(岁)

  ⑷ 几年前父亲年龄是儿子年龄的7倍?

  186 = 12 (年)

  答:12年前父亲的年龄是儿子年龄的7倍。

  2、归一问题的基本特点:

  问题中有一个不变的量,一般是那个单一量,题目一般用照这样的速度等词语来表示。

  关键问题:根据题目中的条件确定并求出单一量;

  复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。这样的应用题就叫做归一问题,这种解题方法叫做归一法。有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。

  由上所述,解答归一问题的关键是求出单位量的数值,再根据题中照这样计算、用同样的`速度等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。

  3、植树问题

  基本类型:

  在直线或者不封闭的曲线上植树,两端都植树

  在直线或者不封闭的曲线上植树,两端都不植树

  在直线或者不封闭的曲线上植树,只有一端植树

  封闭曲线上植树

  基本公式:

  棵数=段数+1

  棵距段数=总长

  棵数=段数-1

  棵距段数=总长

  棵数=段数

  棵距段数=总长

  关键问题:

  确定所属类型,从而确定棵数与段数的关系

  4、鸡兔同笼问题

  基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

  基本思路:

  ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

  ②假设后,发生了和题目条件不同的差,找出这个差是多少;

  ③每个事物造成的差是固定的,从而找出出现这个差的原因;

  ④再根据这两个差作适当的调整,消去出现的差。

  基本公式:

  ①把所有鸡假设成兔子:鸡数=(兔脚数总头数-总脚数)(兔脚数-鸡脚数)

  ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数总头数)(兔脚数一鸡脚数)

  关键问题:找出总量的差与单位量的差。

  5、循环小数

  一、把循环小数的小数部分化成分数的规则

  ①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。

  ②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。

  二、分数转化成循环小数的判断方法

  ①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。

  ②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。

小升初奥数知识汇总7

  数列求和

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:

  首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的.所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示.

  本思路:

  等差数列中涉及五个量:a1 ,an, d, n, sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an = a1+(n-1)d;

  通项=首项+(项数一1) 公差;

  数列和公式:sn,= (a1+ an)n2;

  数列和=(首项+末项)项数2;

  项数公式:n= (an+ a1)d+1;

  项数=(末项-首项)公差+1;

  公差公式:d =(an-a1))(n-1);

  公差=(末项-首项)(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式;

小升初奥数知识汇总8

  一、整除问题:

  (1)数的整除的特征和性质(小升初常考内容)

  (2)位值原理的`应用(用字母和数字混合表示多位数)

  二、质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  三、约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则(小升初常考内容)

  四、余数问题:

  1、带余除式的理解和运用;

  2、同余的性质和运用;

  3、中国剩余定理奇偶问题:

  (1)奇偶与四则运算;

  4、奇偶性质在实际解题过程中的应用完全平方数:

  (1)完全平方数的判断和性质

  (2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

小升初奥数知识汇总9

  小升初奥数知识点讲解

  加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+m2.......+mn种不同的方法。

  关键问题:确定工作的分类方法。

  基本特征:每一种方法都可完成任务。

  乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法。

  关键问题:确定工作的完成步骤。

  基本特征:每一步只能完成任务的'一部分。

  直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

  直线特点:没有端点,没有长度。

  线段:直线上任意两点间的距离。这两点叫端点。

  线段特点:有两个端点,有长度。

  射线:把直线的一端无限延长。

  射线特点:只有一个端点;没有长度。

  ①数线段规律:总数=1+2+3+…+(点数一1);

  ②数角规律=1+2+3+…+(射线数一1);

  ③数长方形规律:个数=长的线段数×宽的线段数:

  ④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数

小升初奥数知识汇总2

  例1.在□处填入适当的数字,使四位数23□□能被3整除。问□□处可有多少种不同的填法?

  【分析与解答】根据23□□能被3整除的条件知:2+3+a+b=5+a+b能被3整除,则a+b=3n+1,又每个□中数字a,b最大只能填9,所以3n+1<18。

  0,1

  当n=0时,3n+1=1 即有2种填法。

  1,0

  0,1,2,3,4

  当n=1时,3n+1=4 即有5种填法。

  4,3,2,1,0

  当n=2时,3n+1=7,有8种填法。

  当n=3时,3n+1=10,有9种填法。

  当n=4时,3n+1=13,有6种填法。

  当n=5时,3n+1=16,有3种填法。

  当n=6时,3n+1=19>18,不合题意。

  2+5+8+9+6+3=33(种)

  因此□□中有33种不同的填法。

  答:共有33种不同的填法。

  试一试:有一个四位数3aa1,它能被9整除,则a代表多少。

  例2.从数字1、2、3、4、5中任意挑选四个数字组成能被5整除而各个数位上数字不同的四位数,共有多少个?

  【分析与解答】因为组成的数能被5整除,所以挑选时5必须包括在内,其他四个数中任取三个,这样共有四种不同的挑选方法:1、2、3和5,1、2、4和5,1、3、4和5,以及2、3、4、和5。每种挑选方法5肯定在个位上,其余3个数子位置可以交换,能组成六个能被5整除的四位数,例如:1、2、3、5四个数字可组成1235、1325、2135、2315、3125和3215。因此四种选法一共可组成6×4=24个能被5整除的四位数。

  答:共有24个。

  试一试:从数字0、1、2、3、4、5中任意挑选5个数字组成能被5整除而各个数位上数字不同的五位数,共有多少个?

  (提示:本题解题思路与例3相似,但注意数字0不能摆在自然数的最高位上。)

  例3.173□是个四位数字。数学老师说:“我在这个□中先后填入3个四位数,依次可被9、11、6整除”。问:数学老师先后填入的3个数字的和是多少?

  【分析与解答】解这道题的关键是:怎样的自然数,才能被9整除?被11整除?被6整除?这里,要注意:被6整除,就是被2和3整除——一定是被3整除的偶数。

  因为能被9整除的数的各位数字之和是9的倍数,并且四位数173□的数字和是1+7+3+□=11+□而□内的数字最大不超过9。所以□内只能填7。

  因为能被11整除的四位数的个位与百位的数字和减去十位与千位的数字和所得到的差是11的倍数,即

  (7+□)-(1+3)=3+□应是11的倍数。

  所以□内只能填8。

  因为能被6整除的自然数是偶数,并且数字和是3的倍数,而1+7+3+□=11+□,所以□内只能填4。

  故数学老师先后填入的3个数字的和是7+8+4=19。

  答:数学老师先后填入的3个数字的和是19。

  例4.用0~9这十个数字组成能被11整除的最大十位数是多少,最小十位数是多少?

  【分析与解答】因为0~9这十个数字的和是45,根据能被11整除的数的特征,这个十位数的奇数位数字和与偶数位数字和之差是11的倍数,所以这个差只能是0、11、22、33和44五种情况。

  由于各位数字之和是45,根据数的奇偶性可知,十位数的奇数位数字之和与偶数位数字之只能是一奇一偶。所以他们的差为奇数,不可能是0、22和44。

  若差是33,而和是45,根据和差问题数量关系可知奇数位数字之和与偶数位数字之和只能分别为39和6,则于所给十个数字中最小五个数字和都超过6,所以差不可能是33。这样差必定是11。

  根据差为11,和为45,可得奇数位数字之和与偶数位数字之和分别是(45+11)÷2=28和(45-11)÷2=17。而若十位数且最大,则其高位数字应尽可能大,经凑数后者,最大十位数是9876524130。

  想一想:最小十位数是多少?

  试一试:用1、2、3、4四个数字,组成能被11整除的.四位数共有多少个?

  例5.将1、2、3、……30从左往右依次排成一个51位数,这个数被11除的余数是多少?

  【分析与解答】此题是求这个51位数被11除的余数是几,显然不可用这个数去除以11找它的余数的方法。同样可根据“一个数被11除的余数与这个数其奇数位数字和减去偶数位数字和的差被11除的余数是相等的”这一性质解答。

  依题意排成的51位数的奇数位上的数字依次是1、3、5、7、9、0、1、2、3……8、9、0、1、2、3、……8、9、0。

  奇数位数字和是:1+3+5+7+9+2×(1+2+3+……+8+9)=115

  这个数的偶数位上的数字和是:

  2+4+6+8+1×10+2×10+3=53

  而115-53=62,62÷11=5……7

  所以这个数被11除的余数是7。

  答:这个数被11除的余数是7。

  注意:运用这一性质时,必须是奇数位数字和减去偶数位数字和,不可反之。由于这个题目恰巧是奇数位上的数字和大,偶数位上的数字和小,所以计算起来比较方便。如果有一个这样的题,奇数位上的数字和小,偶数位上的数字和大,即不够减时,又应该怎样计算呢?

  如:919293949596979899这个18位数被11除,问余数是多少?

  此题奇位上的和是45,偶位上的和是81,即45减81则不够减,那么应该怎样计算呢?可先将奇数位数字和加上11的倍数,再减去偶数位数字和。或者先将偶数位数字和减去11的倍数,然后再用奇数位数字和来减。所得到的差被11除的余数就是原数被11除的余数。

  试一试:求出上面18位数被11除的余数是多少?

小升初奥数知识汇总3

  数学,特别是奥数知识的'复习至关重要,下面是小升初复习:小升初奥数知识大全,希望对大家有所帮助。

  典型应用题

  1、植树问题

  ①开放型与封闭型

  ②间隔与株数的关系

  方阵问题

  外层边长数-2=内层边长数

  (外层边长数-1)×4=外周长数

  外层边长数2-中空边长数2=实面积数

  列车过桥问题

  ①车长+桥长=速度×时间

  ②车长甲+车长乙=速度和×相遇时间

  ③车长甲+车长乙=速度差×追及时间

  列车与人或骑车人或另一列车上的司机的相遇及追及问题

  车长=速度和×相遇时间

  车长=速度差×追及时间

  年龄问题

  差不变原理

  鸡兔同笼

  假设法的解题思想

  牛吃草问题

  原有草量=(牛吃速度-草长速度)×时间

小升初奥数知识汇总4

  众所周知,奥数在考试中绝对有着地位,要实现"笑胜出",孩子在重点中学的数学测验中脱颖而出是十分必要的。从三年级就开始学习的奥数积累到六年级,孩子做过无数的题目,见过无数的题型,但能反映在那张试卷上的,无非也就那么几个知识点。而在这些知识点中,重要的无非也就是这么几个——"数、行、形、算"。

  何谓"数、行、形、算",也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。

  由于这四个问题,学生容易入门,但不易熟练,时常犯错误,因此成为近年来重点中学考试的热点,据统计清华附中近年来的这几大问题的考题占据全部了80%左右,北师大附属实验中学,仁华学校六年级等对这些问题的考察也十分偏重,而数论和行程问题的考察更是重中之重,往往占到一张试卷的50%。如何复习这四方面的内容呢?

  对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。计算的技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方法。

  数论在数论学习中学生往往容易犯如下几个错误:

  1、读题障碍。数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。

  2、知识僵化。由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来"消化"所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:"奇数+奇数=偶数……"可是在做题的时候就想不到用。

  3、只见树木,不见森林。对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。

  知识体系:

  整除问题:

  (1)数的整除的'特征和性质 (常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则 (常考内容)

  余数问题:

  (1)带余除式的理解和运用;(2)同余的性质和运用;(3)中国剩余定理奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用完全平方数:(1)完全平方数的判断和性质(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

  这四个问题我们需要掌握到什么样的程度?

  近几年来,我们通过对一些名校的试卷分析发现,虽然他们对以上的几个问题考察较多,但是难度通常不大,中等难度题目出现的频率很高,通常在60%以上,因此我们的同学只要夯实基础,对于这样的一张试卷的完成应该是能取得很好的成绩的。对此,我们给出建议:如果我们的孩子不是要搞竞赛,只是为了进入重点中学,中等题的掌握绝对是我们的重点,不能盲目追求难度,否则容易适得其反。

小升初奥数知识汇总5

  循环小数

  一、把循环小数的小数部分化成分数的规则

  ①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。

  ②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的'数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。

  二、分数转化成循环小数的判断方法:

  ①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。

  ②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。

小升初奥数知识汇总6

  知识点

  在日常生活中,我们去商场的时候,一般都会有电梯乘坐,在小学奥数中,电梯问题也作为一个专题来讨论研究,我们在复习中应当努力探究其奥秘。

  电梯问题其实是复杂行程问题中的一类。有三点需要注意:一是电梯裸露出来的级数始终一样,即可见级数不变;二是无论人在电梯上是顺行,还是逆行,最终合走的都是电梯的可见级数;三是在同一个人上下往返的情况下,符合流水行程的速度关系,即

  顺行速度=正常行走速度+扶梯运行速度

  逆行速度=正常行走速度-扶梯运行速度

  与流水行船不同的是,自动扶梯上的'行走速度有两种度量:一种是“单位时间运动了多少米”;一种是“单位时间走了多少级台阶”。这两种速度看似形同,实则不等。拿流水行程问题作比较,“单位时间运动了多少米”对应的是流水行程问题中的“船只顺(逆)水速度”;而“单位时间走了多少级台阶”对应的是“船只静水速度”。一般奥数题目涉及自动扶梯的问题中更多的只出现后一种速度,即“单位时间走了多少级台阶”,所以处理数量关系的时候要非常小心,理清了各种数量关系,自动扶梯上的行程问题会变得非常简单。

小升初奥数知识汇总7

  大部分孩子为了小升初得到更好的教育,面对择校问题,基本从三四年级就开始学习奥数,做过很多题型,但在小升初试卷上的,无非就是那么几个知识点数、行、形、算。

  何谓数、行、形、算,也就是数论,行程,图形、计算四个问题。数论难在它的抽象,这是区分尖子生和普通生的关键;行程问题复杂就在其应用,孩子在做这类题目的时候,要求的不仅是其思维,还有其表述;图形问题(几何问题)杂而难,重点要求的是面积的计算,这是中学教育的开始;计算是基础,是孩子取得高分的必要保障。

  对于图形问题,我们要说的就是培养孩子的形象思维,重点加强的是面积的计算。计算的技巧和方法也是在做题的总结和加强的,这里重点介绍一下数论和行程问题的复习方法。

  数论学习中常见错误:

  1、读题障碍。数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的.几句话,却表达了很多意思,学生如果理解不了题目意思,那么很有可能解错题。

  2、知识僵化。由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来消化所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。例如,说起奇偶性都知道怎么回事,马上就开始背:奇数+奇数=偶数可是在做题的时候就想不到用。

  3、只见树木,不见森林。对于数论定理的灵活运用很欠缺。提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。

  知识体系:

  一、整除问题:

  (1)数的整除的特征和性质(小升初常考内容)

  (2)位值原理的应用(用字母和数字混合表示多位数)

  二、质数合数:

  (1)质数、合数的概念和判断(2)分解质因数(重点)

  三、约数倍数:

  (1)最大公约最小公倍数(2)约数个数决定法则(小升初常考内容)

  四、余数问题:

  1、带余除式的理解和运用;

  2、同余的性质和运用;

  3、中国剩余定理奇偶问题:

  (1)奇偶与四则运算;

  4、奇偶性质在实际解题过程中的应用完全平方数:

  (1)完全平方数的判断和性质

  (2)完全平方数的运用整数及分数的分解与分拆(重点、难点)

小升初奥数知识汇总8

  小升初奥数知识点讲解

  加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+m2.......+mn种不同的方法。

  关键问题:确定工作的分类方法。

  基本特征:每一种方法都可完成任务。

  乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法。

  关键问题:确定工作的完成步骤。

  基本特征:每一步只能完成任务的'一部分。

  直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

  直线特点:没有端点,没有长度。

  线段:直线上任意两点间的距离。这两点叫端点。

  线段特点:有两个端点,有长度。

  射线:把直线的一端无限延长。

  射线特点:只有一个端点;没有长度。

  ①数线段规律:总数=1+2+3+…+(点数一1);

  ②数角规律=1+2+3+…+(射线数一1);

  ③数长方形规律:个数=长的线段数×宽的线段数:

  ④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数

小升初奥数知识汇总9

  1.和差倍问题

  和差问题和倍问题差倍问题

  已知条件几个数的和与差几个数的和与倍数几个数的差与倍数

  公式适用范围已知两个数的和,差,倍数关系

  公式①(和-差)÷2=较小数

  较小数+差=较大数

  和-较小数=较大数

  ②(和+差)÷2=较大数

  较大数-差=较小数

  和-较大数=较小数

  和÷(倍数+1)=小数

  小数×倍数=大数

  和-小数=大数

  差÷(倍数-1)=小数

  小数×倍数=大数

  小数+差=大数

  关键问题求出同一条件下的

  和与差和与倍数差与倍数

  2.年龄问题的三个基本特征:

  ①两个人的年龄差是不变的;

  ②两个人的年龄是同时增加或者同时减少的;

  ③两个人的年龄的倍数是发生变化的;

  3.归一问题的基本特点:

  问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

  关键问题:根据题目中的条件确定并求出单一量;

  4.植树问题

  基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树

  基本公式棵数=段数+1

  棵距×段数=总长棵数=段数-1

  棵距×段数=总长棵数=段数

  棵距×段数=总长

  关键问题确定所属类型,从而确定棵数与段数的关系

  5.鸡兔同笼问题

  基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

  基本思路:

  ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

  ②假设后,发生了和题目条件不同的差,找出这个差是多少;

  ③每个事物造成的差是固定的,从而找出出现这个差的原因;

  ④再根据这两个差作适当的调整,消去出现的差。

  基本公式:

  ①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)

  ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)

  关键问题:找出总量的差与单位量的差。

  基本公式棵数=段数+1

  棵距×段数=总长棵数=段数-1

  棵距×段数=总长棵数=段数

  棵距×段数=总长

  关键问题确定所属类型,从而确定棵数与段数的关系

  6.盈亏问题

  基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的'差异,由它们的关系求对象分组的组数或对象的总量.

  基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.

  基本题型:

  ①一次有余数,另一次不足;

  基本公式:总份数=(余数+不足数)÷两次每份数的差

  ②当两次都有余数;

  基本公式:总份数=(较大余数一较小余数)÷两次每份数的差

  ③当两次都不足;

  基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差

  基本特点:对象总量和总的组数是不变的。

  关键问题:确定对象总量和总的组数.

  7.牛吃草问题

  基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.

  基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.

  基本题型:

  ①一次有余数,另一次不足;

  基本公式:总份数=(余数+不足数)÷两次每份数的差

  ②当两次都有余数;

  基本公式:总份数=(较大余数一较小余数)÷两次每份数的差

  ③当两次都不足;

  基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差

  基本特点:对象总量和总的组数是不变的。

  关键问题:确定对象总量和总的组数.基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

  基本特点:原草量和新草生长速度是不变的;

  关键问题:确定两个不变的量。

  基本公式:

  生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);

  总草量=较长时间×长时间牛头数-较长时间×生长量;

  8.周期循环与数表规律

  周期现象:事物在运动变化的过程中,某些特征有规律循环出现。 周期:我们把连续两次出现所经过的时间叫周期。

  关键问题:确定循环周期。

  闰年:一年有366天;

  ①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;

  平年:一年有365天。

  ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

  9.平均数

  基本公式:①平均数=总数量÷总份数

  总数量=平均数×总份数

  总份数=总数量÷平均数

【小升初奥数知识】相关文章:

小升初奥数准备知识09-05

小升初奥数:比例问题的知识点11-12

重庆小升初奥数重要知识点的整理04-18

小升初奥数行程问题之自动扶梯知识点05-25

2023小学奥数知识清单07-31

关于如何攻克小升初奥数必考的四大知识点08-30

数的整除小升初数学复习知识点07-11

小升初数学知识点:数的整除06-12

长沙小升初数学数的整除必考知识点汇总09-09

国外的奥数培训教育01-31