数控机床

数控车床所用的刀具

时间:2024-09-12 22:35:52 秀雯 数控机床 我要投稿
  • 相关推荐

数控车床所用的刀具

  由于数控车床加工是一项精度高的工作,而且它的加工工序集中和零件装夹次数少,所以对所使用的数控刀具提出了更高的要求,今天小编为大家带来一些很实用的资料来帮助大家,希望对您有帮助!

  切削刀具(车刀)

  切削加工离不开刀具。刀具是整个机械加工工艺系统中的一个重要环节。在各种刀具中,车刀的结构相对比较简单,具有代表性,下面以车刀为例予以介绍。车刀由夹持部分和切削部分组成。夹持部分称为刀柄,用来把刀具装夹在车床的刀架上,一般采用普通钢材料锻造而得;切削部分俗称为刀头,在车刀上一般为单个刀片。刀片材料一般有高速钢(俗称白钢刀条)和硬质合金两种,用于剥离金属材料。根据刀具切削部分与夹持部分(即刀片与刀柄)连接方式的不同,车刀可以分为焊接刀具和机夹刀具两大类。

  车刀切削部分的主要构成为:

  1.前刀面(Aγ)切削加工而得的切屑经过的刀片表面

  2.主后刀面(Aα)刀具片上与过渡表面相对的表面

  3.副后刀面(Aα`)刀具片上与已加工表面相对的表面

  4.主切削刃(S)前刀面与主后刀面相交而得到的切削刃。用于切出工件上的过渡表面,完成主要的金属切除。主切削刃是主要的加工刃

  5.副切削刃(S`)前刀面与副后刀面相交而得到的切削刃。它的主要作用是配合主切削刃,完成金属材料的剥离工作,形成工件已加工表面

  6.刀尖指主切削刃与副切削刃的连接处。根据刀具所使用的场合不同,刀尖有倒角刀尖和倒圆刀尖两种。

  从以上的分析中,我们可以了解到:车刀的各个组成部分之间都有着密切的联系。实际上,在十几至几十平方毫米的区域内,若干个部分形成了一些角度。这些角度对加工质量和刀具的使用寿命有极大的影响。对刀具进行角度的分析,是刀具设计者和使用者的重要工作内容。

  刀具切削部分(刀片)的几何角度

  对刀具几何参数进行确定,需要以一定的参考坐标系和参考坐标平面为基准。我们依然以车刀为例。我们引入一个坐标系,作为刀具几何参数的测量基准。

  (1)基面(Pr):这个平面是指通过切削刃上的一个选定点而垂直于主运动方向的平面。对于车刀,这个选定点就是刀尖,而基面就是过刀尖而与刀柄安装平面平行的平面。

  (2)切削平面(Ps):这个平面是指通过切削刃上的一个选定点而垂直于基面的平面。对于一般切削刃为直线的车刀,这个平面就是包含切削刃而与刀柄安装平面垂直平面。

  (3)正交平面(Po):正交平面是指通过切削刃选定点并同时垂直于基面和切削平面的平面。也就是经过刀尖并垂直于切削刃在基面上投影的平面。

  刀具的角度有一些是空间角,根据立体几何知识,空间角应以其在坐标系内某一个平面内的投影来进行度量。因此,刀具所有的几何参数都可以在这个坐标系内的某一个平面内进行测量。

  下面介绍一些车刀的几何角度:

  在正交平面(Po)内测量的角度:

  (1)前角(γ0):前刀面与基面的夹角。当前刀面与切削平面夹角小于90°时,前角为正值;大于90°时,前角为负值。前角对于刀具的切削性能有很大的影响。

  (2)后角(α0):后刀面与切削平面的夹角。当后刀面与基面夹角小于90°时,后角为正值;大于90°时,后角为负值。由于后角的存在,后刀面与加工过渡表面之间的摩擦可以大大减小。

  (3)楔角(β0):前刀面与后刀面之间的夹角。

  β0=90°-(γ0+α0)

  在基面(Pr)内测量的角度:

  (1)主偏角(κγ):主切削平面与假定进给运动方向之间的夹角。主偏角总是为正值。

  (2)副偏角(κγ`):副切削平面与假定进给运动反方向之间的夹角。

  (3)刀尖角(εγ):主切削平面与副切削平面之间的夹角。

  εγ=180°-(κγ+κγ`)

  在切削平面(Ps)内测量的角度:

  刃倾角(λs):指的是主切削刃与基面间的夹角。刃倾角的正负值是这样设定的:当刀尖比车刀刀柄的安装面高时,刃倾角为正值;当刀尖低时,刃倾角为负值。当切削刃平行于刀柄安装面时,刃倾角为0°。这时,切削刃位于基面内。

  以上是对主切削刃的分析。采用同样的方法,也可以定义副切削刃的参考坐标系和参考坐标平面,即定义由副基面(Pr`)、副切削平面(Ps`)和副正交平面(Po`)构成的参考坐标系,进而对副切削刃的各种角度进行分析。

  数控车床就业前景良好

  如今,制造业对数控机床人才的需求大大增加,就业待遇优厚。很多企业反映,数控机床人才“一将难求”,因为抢手,数控机床人才的身价持续上涨,月收入都在1.5万元以上。据小编了解,河北省邯郸市曲周县职教中心已经把数控机床专业作为重点发展专业,势必做强做大该专业,为中国制造输送一批批技能人才。

  当下,数控机床作为工业4.0重要发展领域,已经成为主要工业国家重点竞争领域。中国数控机床产业在国家战略的支持下,近年来呈现出快速发展态势,技术追赶势头不可阻挡。在新一轮产业发展周期中,中国有望通过加大技术研发实现数控机床产业的弯道超车。因此,在产业发展大好的优势下,数控机床人才的就业前景将是一片光明。

  数控机床的6大方向

  1.可靠性最大化

  数控机床的可靠性一直是用户最关心的主要指标。数控系统将采用更高集成度的电路芯片,利用大规模或超大规模的专用及混合式集成电路,以减少元器件的数量,来提高可靠性。通过硬件功能软件化,以适应各种控制功能的要求,同时采用硬件结构机床本体的模块化、标准化和通用化及系列化,使得既提高硬件生产批量,又便于组织生产和质量把关。还通过自动运行启动诊断、在线诊断、离线诊断等多种诊断程序,实现对系统内硬件、软件和各种外部设备进行故障诊断和报警。利用报警提示,及时排除故障;利用容错技术,对重要部件采用“冗余”设计,以实现故障自恢复;利用各种测试、监控技术,当生产超程、刀损、干扰、断电等各种意外时,自动进行相应的保护。

  2.控制系统小型化

  数控系统小型化便于将机、电装置结合为一体。目前主要采用超大规模集成元件、多层印刷电路板,采用三维安装方法,使电子元器件得以高密度安装,较大规模缩小系统的占有空间。而利用新型的彩色液晶薄型显示器替代传统的阴极射线管,将使数控操作系统进一步小型化。这样可以方便地将它安装在机床设备上,更便于对数控机床的操作使用。

  3.智能化

  现代数控机床将引进自适应控制技术,根据切削条件的变化,自动调节工作参数,使加工过程中能保持良好工作状态,从而得到较高的加工精度和较小的表面粗糙度,同时也能提高刀具的使用寿命和设备的生产效率。具有自诊断、自修复功能,在整个工作状态中,系统随时对CNC系统本身以及与其相连的各种设备进行自诊断、检查。一旦出现故障时,立即采用停机等措施,并进行故障报警,提示发生故障的部位、原因等。还可以自动使故障模块脱机,而接通备用模块,以确保无人化工作环境的要求。为实现更高的故障诊断要求,其发展趋势是采用人工智能专家诊断系统。

  4.数控编程自动化

  目前CAD/CAM图形交互式自动编程已得到较多的应用,是数控技术发展的新趋势。它是利用CAD绘制的零件加工图样,再经计算机内的刀具轨迹数据进行计算和后置处理,从而自动生成NC零件加工程序,以实现CAD与CAM的集成。随着CIMS技术的发展,当前又出现了CAD/CAPP/CAM集成的全自动编程方式,它与CAD/CAM系统编程的最大区别是其编程所需的加工工艺参数不必由人工参与,直接从系统内的CAPP数据库获得。

  5.高速度、高精度化

  速度和精度是数控机床的两个重要指标,它直接关系到加工效率和产品质量。目前,数控系统采用位数、频率更高的处理器,以提高系统的基本运算速度。同时,采用超大规模的集成电路和多微处理器结构,以提高系统的数据处理能力,即提高插补运算的速度和精度。并采用直线电动机直接驱动机床工作台的直线伺服进给方式,其高速度和动态响应特性相当优越。采用前馈控制技术,使追踪滞后误差大大减小,从而改善拐角切削的加工精度。

  6.多功能化

  配有自动换刀机构(刀库容量可达100把以上)的各类加工中心,能在同一台机床上同时实现铣削、镗削、钻削、车削、铰孔、扩孔、攻螺纹等多种工序加工,现代数控机床还采用了多主轴、多面体切削,即同时对一个零件的不同部位进行不同方式的切削加工。数控系统由于采用了多CPU结构和分级中断控制方式,即可在一台机床上同时进行零件加工和程序编制,实现所谓的“前台加工,后台编辑”。为了适应柔性制造系统和计算机集成系统的要求,数控系统具有远距离串行接口,甚至可以联网,实现数控机床之间的数据通信,也可以直接对多台数控机床进行控制。

  为适应超高速加工的要求,数控机床采用主轴电动机与机床主轴合二为一的结构形式,实现了变频电动机与机床主轴一体化,主轴电机的轴承采用磁浮轴承、液体动静压轴承或陶瓷滚动轴承等形式。

  数控机床以其卓越的柔性自动化的性能、优异而稳定的精度、灵捷而多样化的功能引起世人瞩目,它开创了机械产品向机电一体化发展的先河,因此数控技术成为先进制造技术中的一项核心技术。另一方面,通过持续的研究,信息技术的深化应用促进了数控机床的进一步提升。

【数控车床所用的刀具】相关文章:

数控车床的操作方法02-08

自动化数控车床日常操作的具体流程03-27

数控车床进行车削加工时需要注意什么04-23