临床执业医师考点:蛋白质代谢
蛋白质代谢指蛋白质在细胞内的代谢途径。各种生物均含有水解蛋白质的蛋白酶或肽酶,这些酶的专一性不同,但均能破坏肽键,使各种蛋白质水解成其氨基酸成分的混合物。
第一节 概述
一、主要途径
1. 蛋白质代谢以氨基酸为核心,细胞内外液中所有游离氨基酸称为游离氨基酸库,其含量不足氨基酸总量的1%,却可反映机体氮代谢的概况。食物中的蛋白都要降解为氨基酸才能被机体利用,体内蛋白也要先分解为氨基酸才能继续氧化分解或转化。
2. 游离氨基酸可合成自身蛋白,可氧化分解放出能量,可转化为糖类或脂类,也可合成其他生物活性物质。合成蛋白是主要用途,约占75%,而蛋白质提供的能量约占人体所需总能量的10-15%。蛋白质的代谢平衡称氮平衡,一般每天排出5克氮,相当于30克蛋白质。
3. 氨基酸通过特殊代谢可合成体内重要的含氮化合物,如神经递质、嘌呤、嘧啶、磷脂、卟啉、辅酶等。磷脂的合成需S-腺苷甲硫氨酸,氨基酸脱羧产生的胺类常有特殊作用,如5-羟色胺是神经递质,缺少则易发生抑郁、自杀;组胺与过敏反应有密切联系。
二、消化
外源蛋白有抗原性,需降解为氨基酸才能被吸收利用。只有婴儿可直接吸收乳汁中的抗体。
可分为以下两步:
1. 胃中的消化:胃分泌的盐酸可使蛋白变性,容易消化,还可激活胃蛋白酶,保持其最适pH,并能杀菌。胃蛋白酶可自催化激活,分解蛋白产生蛋白胨。胃的消化作用很重要,但不是必须的,胃全切除的人仍可消化蛋白。
2. 肠是消化的主要场所。肠分泌的碳酸氢根可中和胃酸,为胰蛋白酶、糜蛋白酶、弹性蛋白酶、羧肽酶、氨肽酶等提供合适环境。肠激酶激活胰蛋白酶,再激活其他酶,所以胰蛋白酶起核心作用,胰液中有抑制其活性的小肽,防止在细胞中或导管中过早激活。外源蛋白在肠道分解为氨基酸和小肽,经特异的氨基酸、小肽转运系统进入肠上皮细胞,小肽再被氨肽酶、羧肽酶和二肽酶彻底水解,进入血液。所以饭后门静脉中只有氨基酸。
三、内源蛋白的降解
1. 内源蛋白降解速度不同,一般代谢中关键酶半衰期短,如多胺合成的限速酶-鸟氨酸脱羧酶半衰期只有11分钟,而血浆蛋白约为10天,胶原为1000天。体重70千克的成人每天约有400克蛋白更新,进入游离氨基酸库。
2. 内源蛋白主要在溶酶体降解,少量随消化液进入消化道降解,某些细胞器也有蛋白酶活性。内源蛋白是选择性降解,半衰期与其组成和结构有关。有人认为N-末端组成对半衰期有重要影响(N-末端规则),也有人提出半衰期短的蛋白都含有一个富含脯氨酸、谷氨酸、丝氨酸和苏氨酸的区域(PEST区域)。如研究清楚,就可能得到稳定的蛋白质产品。
四、氨基酸的吸收
食用蛋白质后15分钟就有氨基酸进入血液,30到50分钟达到最大。氨基酸的吸收与葡萄糖类似,有以下方式:
1. 需要载体的主动转运,需要钠,消耗离子梯度的势能。已发现6种载体,运载不同侧链种类的氨基酸。
2. 基团转运,需要谷胱甘肽,每转运一个氨基酸消耗3个ATP,而用载体转运只需三分之一个。此途径为备用的旁路,一般无用。
第二节 脱氨和脱羧
氨基酸失去氨基称为脱氨,是机体氨基酸分解代谢的第一步。绝大多数氨基酸先脱氨生成a-酮酸,再氧化或转化为其他物质。有氧化脱氨和非氧化脱氨两类,前者普遍存在,后者存在于某些微生物。
一、氧化脱氨
(一)过程:氨基酸在氨基酸氧化酶催化下脱氢生成亚氨基酸,再水解生成酮酸和氨。脱下的氢由黄素蛋白传递给氧,生成过氧化氢,再分解为水和氧。总反应如下:
2氨基酸+O2=2酮酸+2NH3
过氧化氢也可氧化酮酸生成脂肪酸和二氧化碳。
(二)有关酶
1. L-氨基酸氧化酶:可催化多数氨基酸,但甘氨酸、侧链含羟基、羧基、氨基的氨基酸无效,需专门的酶。以FAD或FMN为辅基,人的酶以FMN为辅基。
2. D-氨基酸氧化酶:存在于肝、肾,以FAD为辅基。
3. 氧化专一氨基酸的酶:如甘氨酸氧化酶、D-天冬氨酸氧化酶、L-谷氨酸脱氢酶等。后者重要,分布广泛,活力高,受别构调节,能量不足时激活,加快氧化。以NAD或NADP为辅酶,不需氧,通过呼吸链再生。在体外可用于合成味精。
二、非氧化脱氨
1. 还原脱氨:严格无氧时氢化酶催化生成羧酸和氨。
2. 水解脱氨:水解酶催化,生成a-羟酸和氨。
3. 脱水脱氨:丝氨酸和苏氨酸在脱水酶催化下生成烯,重排成亚氨基酸,自发水解生成酮酸和氨。脱水酶以磷酸吡哆醛为辅基。
4. 脱巯基脱氨:半胱氨酸在脱硫氢基酶催化下脱去硫化氢,重排、水解,生成丙酮酸和氨。
5. 氧化-还原脱氨:两个氨基酸一个氧化,一个还原,脱去两个氨,生成酮酸和脂肪酸。
三、脱酰胺作用
谷氨酰胺酶和天冬酰胺酶可催化脱酰胺,生成相应的氨基酸。此酶分布广泛,专一性强。
四、转氨基作用
1. 定义:指a-氨基酸和酮酸之间氨基的转移作用。氨基酸的a-氨基转移到酮酸的'酮基上,生成酮酸,原来的酮酸形成相应的氨基酸。转氨作用普遍存在,除甘氨酸、赖氨酸、苏氨酸和脯氨酸外都参与转氨,对其分解及合成有重要作用。
2. 转氨酶:种类很多,多需要谷氨酸,对另一个氨基酸要求不严,以活力最大的命名。其反应是可逆的,由浓度控制。都含磷酸吡哆醛,乒乓机制。吡哆醛还参与脱羧、脱水、脱硫化氢及消旋等反应。
五、联合脱氨
指脱氨与转氨联合,是氨基酸降解的主要方式,有两种方式:
1. 氨基酸先转氨生成谷氨酸,再由谷氨酸脱氢酶脱去氨基。普遍存在。
2. 腺苷酸循环:氨基转给谷氨酸,再生成天冬氨酸,与次黄嘌呤核苷一磷酸生成腺苷酸代琥珀酸,再裂解成腺苷酸和延胡索酸。腺苷酸水解成次黄嘌呤核苷酸,放出氨;延胡索酸水化、氧化再生草酰乙酸。此途径主要存在于肌肉和脑,其腺苷酸脱氨酶活性较高。肝脏谷氨酸脱氢酶活力高,但90%转化为天冬氨酸。
六、脱羧
少数氨基酸先脱羧生成一级胺。此反应由脱羧酶催化,含磷酸吡哆醛,专一性强,每种酶只催化一种L-氨基酸。此酶在各种组织中普遍存在,生成的胺有重要生理作用,如脑中谷氨酸脱羧生成的g-氨基丁酸是神经递质。
第三节 氮的排泄
氨对机体有毒,特别是对脑。血液中1%的氨即可使神经中毒。水生动物可直接排氨,陆生动物排溶解度较小的尿素,卵生动物排不溶的尿酸。
一、氨的转运
(一)谷氨酰胺合成酶将氨与谷氨酸合成谷氨酰胺,消耗一个ATP。谷氨酰胺中性无毒,容易通过细胞膜,进入血液运到肝脏后被谷氨酰胺酶分解,放出氨。
(二)肌肉通过葡萄糖-丙氨酸循环转运氨。氨经谷氨酸转给丙氨酸,运到肝后再转氨生成谷氨酸。丙酮酸异生为葡萄糖返回肌肉。这样肌肉活动产生的丙酮酸和氨都得到处理,一举两得。
二、尿素的生成
1. 在线粒体中氨甲酰磷酸合成酶I将氨和CO2合成氨甲酰磷酸,消耗2个ATP。N-乙酰谷氨酸是此酶的正调节物。酶II在细胞质,与核苷酸的合成有关。
2. 氨甲酰磷酸与鸟氨酸形成瓜氨酸和磷酸,由鸟氨酸转氨甲酰酶催化,需镁离子。
3. 瓜氨酸出线粒体,进入细胞质,与天冬氨酸生成精氨琥珀酸。精氨琥珀酸合成酶需镁离子,消耗1个ATP的两个高能键。
4. 精氨琥珀酸裂解酶催化其裂解,生成精氨酸和延胡索酸。
5. 精氨酸酶催化水解生成鸟氨酸和尿素。
6. 总反应为:
NH4++CO2+3ATP+Asp+2H2O=尿素+延胡索酸+2ADP+2Pi+AMP+Ppi
共除去2分子氨和1分子CO2,消耗4个高能键。前两步在线粒体中进行,可避免氨进入血液引起神经中毒。此途径称为尿素循环或鸟氨酸循环,缺乏有关酶会中毒死亡。
三、其他途径
爬虫和鸟排泄不溶的尿酸,可保持水,但耗能高。具体见核酸代谢。此外,蜘蛛排鸟嘌呤,某些鱼排氧化三甲胺,高等植物合成谷氨酰胺和天冬酰胺,储存体内。
第四节 碳架氧化
20种氨基酸分别以5种物质进入三羧酸循环:丙氨酸、丝氨酸、苏氨酸、甘氨酸、半胱氨酸、苯丙氨酸、酪氨酸、亮氨酸、赖氨酸和色氨酸生成乙酰辅酶A,精氨酸、组氨酸、谷氨酰胺、脯氨酸和谷氨酸生成a-酮戊二酸,甲硫氨酸、异亮氨酸、缬氨酸生成琥珀酰辅酶A;苯丙氨酸和酪氨酸还生成延胡索酸;天冬氨酸和天冬酰胺生成草酰乙酸。分解主要在肝和肾进行,某些中间物可转化为糖、酮体及生物活性物质,见下节。氨基酸脱羧形成胺后不能进入三羧酸循环。
一、乙酰辅酶A途径
(一)由丙酮酸生成乙酰辅酶A
1. 丙氨酸:由谷丙转氨酶转氨生成丙酮酸
2. 丝氨酸:脱水脱氨生成丙酮酸,由丝氨酸脱水酶催化,含磷酸吡哆醛。
3. 甘氨酸:可接受羟甲基,转变成丝氨酸。由丝氨酸转羟甲基酶催化,以磷酸吡哆醛为辅基,甲烯基四氢叶酸为供体,需锰。此途径主要作为丝氨酸的合成途径,甘氨酸的分解主要是作为一碳单位供体,由甘氨酸裂解酶裂解生成甲烯基四氢叶酸和二氧化碳及氨,次要途径是氧化脱氨生成乙醛酸,再氧化成甲酸或草酸。甘氨酸与谷胱甘肽、肌酸、胆碱、嘌呤、卟啉的合成都有关系。
4. 苏氨酸:由苏氨酸醛缩酶裂解成甘氨酸和乙醛,乙醛可氧化成乙酸再生成乙酰辅酶A。也可脱水生成a-酮丁酸,或脱去脱羧形成氨基丙酮。
5. 半胱氨酸:可转氨生成b-巯基丙酮酸,再由转硫酶脱去硫化氢生成丙酮酸。也可先氧化成半胱氨酸亚磺酸,再转氨、脱去亚硫酸形成丙酮酸。产生的硫化氢要氧化成亚硫酸,再氧化成硫酸,由尿排出。
(二)由乙酰乙酰辅酶A生成乙酰辅酶A
1. 苯丙氨酸:由苯丙氨酸-4-单加氧酶催化生成酪氨酸,消耗一个NADPH。
2. 酪氨酸:先转氨生成4-羟苯丙酮酸,再氧化、脱羧、开环,裂解成延胡索酸和乙酰乙酸。延胡索酸进入三羧酸循环,乙酰乙酸由琥珀酰辅酶A活化生成乙酰乙酰辅酶A,硫解形成两个乙酰辅酶A。
3. 亮氨酸:先转氨、脱羧生成异戊酰辅酶A,再脱氢、末端羧化、加水生成羟甲基戊二酰辅酶A(HMG CoA),裂解成乙酰乙酸和乙酰辅酶A。
4. 赖氨酸:先由两条途径生成L-a-氨基己二酸半醛,其一是与a-酮戊二酸缩合成酵母氨酸,再放出谷氨酸;其二是先脱去a氨基再环化、开环,将氨基转移到a位。生成半醛后氧化成酸,转氨生成a-酮己二酸,脱羧生成戊二酰辅酶A,脱氢、脱羧形成巴豆酰辅酶A,最后水化、脱氢成乙酰乙酰辅酶A。
5. 色氨酸:较复杂,先氧化,依次脱去甲醛、丙氨酸,最后形成a-酮己二酸,生成乙酰乙酰辅酶A。其11个碳原子共生成一个乙酰乙酰辅酶A,一个,4个二氧化碳和一个甲酸。
二、a-酮戊二酸途径
由精氨酸、组氨酸、谷氨酰胺、脯氨酸和谷氨酸5种。
1. 精氨酸:由精氨酸酶水解成鸟氨酸和尿素,再转氨生成谷氨酸g半醛,由脱氢酶氧化成谷氨酸,转氨或脱氨形成。a-酮戊二酸。
2. 组氨酸:组氨酸分解酶脱去氨基形成尿刊酸,再水合、开环生成N-甲亚氨基谷氨酸,谷氨酸转甲亚氨酶催化转给四氢叶酸,形成谷氨酸。
3. 谷氨酰胺:可由谷氨酰胺酶水解;可将酰胺转给a-酮戊二酸,生成两个谷氨酸;也可转到a-酮戊二酸的g-羧基上,形成的g-酮谷酰胺酸可水解生成a-酮戊二酸。
4. 脯氨酸:先由脯氨酸氧化酶形成双键,再加水开环形成谷氨酸g半醛,用NAD氧化成谷氨酸。
三、琥珀酰辅酶A途径
有甲硫氨酸、异亮氨酸和缬氨酸。
1. 甲硫氨酸:与ATP生成S-腺苷甲硫氨酸,转甲基后水解,生成高半胱氨酸,在胱硫醚-b-合成酶催化下与丝氨酸合成胱硫醚,胱硫醚-g-分解酶催化脱去半胱氨酸和氨基,生成a-酮丁酸,脱羧成丙酰辅酶A,丙酰辅酶A羧化酶催化生成D-甲基丙二酰辅酶A,消旋酶生成L-型,变位生成琥珀酰辅酶A。
2. 异亮氨酸:转氨,脱羧生成a-甲基丁酰辅酶A,经b-氧化生成乙酰辅酶A和丙酰辅酶A,最后生成琥珀酰辅酶A。
3. 缬氨酸:转氨,脱羧形成异丁酰辅酶A,脱氢、水化后再水解,生成b-羟异丁酸,脱氢生成甲基丙二酸半醛,氧化为甲基丙二酰辅酶A,再变位生成琥珀酰辅酶A。
四、延胡索酸途径
苯丙氨酸和酪氨酸的部分碳链形成延胡索酸,另一部分为乙酰乙酸。
五、草酰乙酸途径
天冬酰胺酶催化生成天冬氨酸,再转氨生成草酰乙酸,进入三羧酸循环。天冬酰胺酶可控制白血病。
六、生糖氨基酸和生酮氨基酸
生成乙酰乙酰辅酶A的苯丙氨酸、酪氨酸、亮氨酸、赖氨酸和色氨酸称为生酮氨基酸;其他氨基酸称为生糖氨基酸。苯丙氨酸和酪氨酸既生糖又生酮。因为丙酮酸可生成乙酰辅酶A,再生酮,所以二者的界限并不是非常严格的。
第五节 氨基酸衍生物