初中知识

八年级下册数学知识点总结

时间:2023-07-14 09:45:48 炜玲 初中知识 我要投稿
  • 相关推荐

八年级下册数学知识点总结

  数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果。下面是小编整理的关于数学知识点总结,欢迎大家参考!

八年级下册数学知识点总结

  八年级下册数学知识点总结

  第一章 一元一次不等式和一元一次不等式组

  一、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式。

  能使不等式成立的未知数的值,叫做不等式的解。 不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集。 求不等式解集的过程叫解不等式。

  由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

  不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。

  等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式。

  二、不等式的基本

  性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。 (注:移项要变号,但不等号不变。)

  性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

  性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。不等式的基本性质<1>、 若a>b, 则a+c>b+c;<2>、若a>b, c>0 则ac>bc若c<0, 则ac不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c

  三、解不等式的步骤:

  1、去分母;

  2、去括号;

  3、移项合并同类项;

  4、系数化为1。

  四、解不等式组的步骤:

  1、解出不等式的解集

  2、在同一数轴表示不等式的解集。 五、列一元一次不等式组解实际问题的一般步骤:

  (1) 审题;

  (2)设未知数,找(不等量)关系式;

  (3)设元,(根据不等量)关系式列不等式(组)

  (4)解不等式组;检验并作答。

  六、常考题型:

  1、 求4x—6 7x—12的非负数解。

  2、已知3(x—a)=x—a+1r的解适合2(x—5) 8a,求a 的范围。

  3、当m取何值时,3x+m—2(m+2)=3m+x的解在—5和5之间。

  第二章 分解因式

  一、公式:

  1、 ma+mb+mc=m(a+b+c)2、a2—b2=(a+b)(a—b)3、a2±2ab+b2=(a±b)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

  1、把几个整式的积化成一个多项式的形式,是乘法运算。

  2、把一个多项式化成几个整式的积的形式,是因式分解。

  3、ma+mb+mc=m(a+b+c)

  4、因式分解与整式乘法是相反方向的变形。

  三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式。

  提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式。 找公因式的一般步骤:

  (1)若各项系数是整系数,取系数的最大公约数;

  (2)取相同的字母,字母的指数取较低的;

  (3)取相同的多项式,多项式的指数取较低的。

  (4)所有这些因式的乘积即为公因式。

  四、分解因式的一般步骤为:

  (1)若有"—"先提取"—",若多项式各项有公因式,则再提取公因式。

  (2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。

  (3)每一个多项式都要分解到不能再分解为止。

  五、形如a2+2ab+b2或a2—2ab+b2的式子称为完全平方式。

  分解因式的方法:

  1、提公因式法。

  2、运用公式法。

  数学八年级下册分式知识点总结

  1)分式混合运算法则:

  分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

  乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

  加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简。

  2)分式方程的增根问题

  (1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知

  数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现

  不适合原方程的根---增根;

  (2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.

  列分式方程基本步骤

  ①审-仔细审题,找出等量关系。

  ②设-合理设未知数。

  ③列-根据等量关系列出方程(组)。

  ④解-解出方程(组)。注意检验

  ⑤答-答题。

  3)解分式方程的基本步骤

  ⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)

  ⑵解整式方程,得到整式方程的解。

  ⑶检验,把所得的整式方程的解代入最简公分母中:

  如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

  产生增根的条件是:

  ①是得到的整式方程的解;

  ②代入最简公分母后值为0。

  4)分式的基本性质:

  分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

  即,(C≠0),其中A、B、C均为整式。分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

  约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。

  5)分式的约分步骤:

  (1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;

  (2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

  6)分式的运算:

  1.分式的加减法法则:

  (1)同分母的分式相加减,分母不变,把分子相加;

  (2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。

  2.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

  3.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。

  4.对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。

  约分的方法和步骤包括:

  (1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的公约数的积;

  (2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。

  7)通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。

  分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。

  (1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的次幂的所有不同字母的积;

  (2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;

  (3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;

  (4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。

  8)注意:

  (1)分式的约分和通分都是依据分式的基本性质;

  (2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。

  (3)约分时,分子与分母不是乘积形式,不能约分.

  3.求最简公分母的方法是:

  (1)将各个分母分解因式;

  (2)找各分母系数的最小公倍数;

  (3)找出各分母中不同的因式,相同因式中取次数的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。

  运算符号

  如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb,lim),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。

  基本函数有哪些

  正弦:sine余弦:cosine(简写cos)

  正切:tangent(简写tan)

  余切:cotangent(简写cot)

  正割:secant(简写sec)

  余割:cosecant(简写csc)

  数学八年级下册第三章知识点总结

  一、分式的概念

  1.分式是两个整式相除的商式,其中分子为被除数,分母为除数,分数线起除号(或括号)的作用。

  2.分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据。

  3.在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

  二、分式的基本性质

  分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。

  三、四则运算

  同分母分式加减法则:分母不变,将分子相加减。

  异分母分式加减法则:通分后,再按照同分母分式的加减法法则计算。

  分式的乘法法则:用分子的积作分子,分母的积作分母。

  分式的除法法则:把除式变为其倒数再与被除式相乘。

  四、分式条件

  1.分式有意义条件:分母不为0。

  2.分式值为0条件:分子为0且分母不为0。

  3.分式值为正(负)数条件:分子分母同号得正,异号得负。

  4.分式值为1的条件:分子=分母≠0。

  5.分式值为-1的条件:分子分母互为相反数,且都不为0。