初中知识

七年级下册数学教学设计

时间:2024-03-22 10:29:03 炜玲 初中知识 我要投稿
  • 相关推荐

2023-2024七年级下册数学教学设计(精选9篇)

  作为一名优秀的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。那么什么样的教学设计才是好的呢?下面是小编收集整理的2023-2024七年级下册数学教学设计,仅供参考,希望能够帮助到大家。

2023-2024七年级下册数学教学设计(精选9篇)

  七年级下册数学教学设计 1

  一、教材编排特点及重点训练内容:

  本册教材的编排顺序是:相交线与平行线,实数,平面直角坐标系,二元一次方程组,不等式与不等式组,数据的收集、整理与描述。

  本册书的6章内容涉及《全日制义务教育数学课程标准(实验稿)》中“数与代数”“空间与图形”“实践与综合应用”三个领域,其中“实践与综合应用”以课题学习的形式安排在第九章。这6章大体上采用相近内容相对集中的方式安排,前一章基本属于“空间与图形”领域,后章五基本属于“数与代数”领域,这样安排有助于加强知识间的纵向联系。在各章具体内容的编写中,又特别注意加强各领域之间的横向联系。

  教材编排有如下特点:

  1.加强与实际的联系,体现由具体—抽象—具体的认识过程。

  2.注意给学生留出探索和交流的空间,改变学生的学习方式。

  3.体现由特殊到一般的认识过程.

  4.强调数学思想方法.本册书突出体现了数形结合的思想、转化的思想以及类比的方法。

  重点训练项目是:通过相交线与平行线的教学初步让学生学会简单的推理;平方根与立方根的概念与求法,实数的概念及实数与平面直角坐标系的关系;二元一次方程组的教法与应用;不等式与不等式组的教法与应用;数据的收集、整理与描述。

  二、学生学情:

  本班学生进行了一个学期的学习,虽然期末考试成绩可以,但是发现本班学生尖子生少,中等生较多,差生较多,上课很多学生不认真,学习态度学习习惯不是很好,本学期要切实采取措施培养学生良好的学习习惯。

  三、教学要求:

  xxx

  四、教学措施:

  1.本学期教学工作重点仍然是加强基础知识的教学和基本技能的训练,在此基础上努力培养学生的分析问题和解决问题的能力。所以要抓好课前备课,这就要求我要认真研究教材,把握每节课的教学重点和难点,课堂上注重教学方法,努力让不同的学生都学到有用的数学。

  2.依据课程标准、教材要求和学生实际,设计出突出重点,突破难点,解决关键的整体优化教学方法。教学方法的运用要切合学生的实际,要有利于培养学生的良好学习习惯,有利于调动不同层次的学生的学习积极性,有利于培养学生的自学能力、思维能力和解决问题的能力。采取多种教学方法,如多让学生动手操作,多设问,多启发,多观察等,增加学习主动性和学习兴趣,体现学生的主体性。教学过程中尽量采取多鼓励、多引导、少批评的教育方法。这样通过多种教学方法,充分调动学生的学习积极性,使学生形成主动学习的意识,教学中通过鼓励性的语言激励学生,使水同层次的学生都能得到鼓励,以此增强他们的学习信心。

  3.根据学生的不同学习状况,给不同的学生布置不同的作业,对于学习比较的学生,给他们留一些与课堂教学内容相关的基础性的作业,检验他们对当堂教学内容的掌握情况;对于学习成绩比较好的学生,留一些综合运用或拓展能力方面的作业,检查他们对知识的灵活运用和综合运用情况。

  4.利用课堂教学培养学生养成良好的学习习惯。要求学生课前自学,通过预习“我”知道了什么,还有什么不知道或还有什么我看不懂,在书上做出记号。以便上课时重点听讲。课堂上,要求学生养成良好的'听课习惯:课前做好上课的准备,听课时要集中精神,专心听讲,积极思考问题,认真回答问题,不懂的及时提出来。要求课后养成复习的习惯,每天都要把所学的知识进行复习,可在头脑中回顾当天所学知识,对于忘掉的或回想不起来的,可翻书重新记忆。另外,隔段时间还要把前面所学的知识再行回顾,以免时间长了忘记了。要求学生每天认真完成作业,作业要书写工整,解题规范,杜绝抄袭现象,使学生养成良好的做作业习惯。

  5.关注学困生,不歧视学困生,尊重、关心、爱护他们,使他们感到老师和同学对他们的关心。设置一些简单的问题,由他们回答,增强他们的自信心。利用中午休息时间或第八节自习时间为他们辅导,尽量使他们跟上教学进度。另外,对他们要有耐心,对于他们提出的问题,耐心解答。

  6.培优补差。对于中上等生,利用课后阅读材料和课外资料丰富他们的头脑,增加他们的知识面,通过专题训练,提高他们的综合分析问题的能力和解决问题的能力。鼓励他们利用课余时间通过课外资料或上网学习等方式拓宽他们知识面和视野,不懂就问,养成勤学好问的习惯,以提高他们的各方面的能力。对于学困生多关心和帮助,在课堂上多提问他们一些简单的问题,多鼓励他们,以增强他们的信心。

  七年级下册数学教学设计 2

  一、指导思想:

  以十八大精神为指导,全面贯彻党的教育方针,积极落实《数学新课程标准》的改革观。数学学科依托社会生产力及科学技术的进步,特别是与计算机技术相结合,数学学科在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好地探索客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收 集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

  义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

  二、学期教学目标

  通过本期教学,使学生形成一定的数学素质,能自觉运用数学知识解决生活中的数学问题,形成扎实的数学基本功,为今后继续学习数学打下良好的基础。培养一批数学尖子,能掌握科学的学习方法。不及格人数较少。形成良好学风。形成良好的数学学习习惯。形成融洽的师生关系。使学生在德、智、体各方面全面发展。

  将课堂教学效率的提高作为课堂教学的首要目标,将学生学习方式的转变作为变革的重点,将小组活动作为教学活动的重要形式,给学生更多的参与机会,积极进行自助互助学习型课堂,争取数学教学及学生学习与发展的高效率、好效果。

  三、学生基本情况分析

  1、通过半年的学习,学生的能力发展水平、知识的理解和掌握程度都有一定的提高,但也存在着不同程度的差距,普遍存在着优秀生、中程生、必培生三部分学生。一部分同学基础好,学习兴趣浓厚,因而能够自觉地进行学习,习惯良好、成绩较理想。一部分同学由于不是很努力,学习方法上不恰当,或者由于其它一些别的原因,使成绩处于中游水平。也有一部分同学基础知识掌握差,觉悟差些,自我约束力差,致使学习成绩不理想,成为必培生。

  2、学生的能力发展水平包括多方面,如计算能力、观察能力、逻辑思维能力、综合分析能力等,学生年龄小,知识浅薄,分析能力较差,在教学过程中,要注意加以引导。

  3、本级学生有一部分学习上认真刻苦,逻辑思维能力强,能主动学习,不懂就问,这部分学生一般比较优秀;但一部分学生基础差,干劲不足,课前不预习,上课开小差,课后不复习,抄袭作业,没有上进心,针对他们,需要加强这方面的训练,改进新的教学方法。

  四、教材分析 本册教材内容包括:相交线与平行线,平面直角坐标系,三角形,二元一次方程组,不等式与不等式组,数据的收集、整理与描述等六章,且各章节皆是重点,如:相交线和平行线这一章涉及对顶角相等,平行线的性质和判定,都是以后几何证明中不可缺少的基本组成部分;平面直角坐标系,是今后学习函数图象的基础,是数与形之间的桥梁,三角形这一章仍是正式介绍证明的准备阶段,是本套教科书采用螺旋上升的编排方式中不可缺少的一部分;二元一次方程组,不等式与不等式组,这二章是数与代数部分的重点内容。

  本册教材采用循序渐进、螺旋上升的设计,对知识点的阐述是由浅入深、逐级递进,顺应了学生的认识心理规律,但这样的编排使学生在某一阶段对某一内容的学习无法深入,学不透彻,不利于响应知识结构的构建,教师在教学时就要弥补这些不足。

  新课程背景下也对本册教材进行了适当调整,适用性较强,稍微差点的`学生也能跟上。 对于推理能力的培养,整套教科书是按照“说理”“推理”“用符号表示推理”等不同层次、分阶段逐步加深地安排的。因此,逐步深入地让学生学会说理,是本教材的一个难点。解决以上难点的关键是要按照教科书的安排,一步一步地,循序渐进地引入推理论证的内容。在本章,结合正文的相关内容,进行初步的说理训练。

  重视数学思想与数学建模也是本册教材编写的一大特征,充分发挥学习心理学中正向迁移的积极作用,借助已有的对方程的认知储备,逐步推进。通过大量实例的分析与解决,学生得到有效训练,进一步深入体会方程(组)及不等式(组)等建模思想方法,是解决现实问题的一种重要数学模型及工具。

  五、课时进度计划

  第五章 相交线与平行线 20课时

  第六章 实数 17课时

  第七章 平面直角坐标系 11课时

  第八章 二元一次方程组 20课时

  第九章 不等式与不等式组 16课时

  第十章 数据的收集、整理与描述 8课时

  七年级下册数学教学设计 3

  教学目标:

  1.会用代入法解二元一次方程组。

  2.初步体会解二元一次方程组的基本思想――“消元”。

  3.通过研究解决问题的方法,培养学生合作交流意识与探究精神。

  重点:

  用代入消元法解二元一次方程组。

  难点:

  探索如何用代入法将“二元”转化为“一元”的消元过程。

  教学过程:

  复习提问:

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?

  解:设这个队胜x场,根据题意得

  解得

  x=18

  则 20-x=2

  答:这个队胜18场,负2场。

  新课:

  在上述问题中,我们可以设出两个未知数,列出二元一次方程组

  设胜的场数是x,负的场数是y,x+y=20

  2x+y=38

  那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x+y=20说明y=20-x,将第2个方程

  2x+y=38的y换为20-x,这个方程就化为一元一次方程。

  二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

  归纳:

  上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。

  例1 把下列方程写成用含x的式子表示y的形式:

  (1)2x-y=3 (2)3x+y-1=0

  例2 用代入法解方程组

  x-y=3 ①

  3x-8y=14 ②

  例3 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5。某厂每天生产这种消毒液22。5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?

  用代入消元法解二元一次方程组的步骤:

  (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来。

  (2)把(1)中所得的'方程代入另一个方程,消去一个未知数。

  (3)解所得到的一元一次方程,求得一个未知数的值。

  (4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。

  七年级下册数学教学设计 4

  1、教学资源分析

  采用多媒体课件,导学案进行教学。

  2、教学内容分析

  在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容。不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识。解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因而解一元一次不等式是一项基本技能。另外,不等式解集的数轴表示从形的角度描述了不等式的解集,并为解不等式组做了准备。本节内容是进一步学习其他不等式(组)的基础。

  解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐渐将不等式化为x>a或x

  ●重点

  一元一次不等式的解法。

  ●难点

  不等式性质3在解不等式中的运用是难点

  3、教学目标分析

  ●目标

  1.使学生了解一元一次不等式的概念;

  2.使学生掌握一元一次不等式的解法,并能在数轴上表示其解集。

  3.经历探究一元一次不等式解法的过程,培养学生独立思考的习惯和合作交流的意识。

  ●目标解析

  达到目标1的'标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集。

  达到目标2的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x。

  达到目标3的标志是:学生能够独立思考后积极参与学习中去,在轻松,没有负担在氛围中完成对新知的学习。

  4、学习者特征分析

  本节课是在学生了解不等式的解和解集的意义,了解不等式解集的数轴表示方法,能利用不等式的性质对不等式进行简单变形的基础上学习本课的。现在学生已经具备了一定的自主学习的能力,本节的学习中我以问题串的形式贯穿整个教学过程,引导学生对比一元一次不等式和一元一次方程的有关内容,尤其是一元一次不等式和一元一次方程解法的比较,有利于对新知识的掌握,同时培养了学生类比的学习方法。

  5、教学过程设计

  (一)、问题导入,探索新知1

  问题1:举出一元一次方程的例子?

  【设计意图】复习一元一次方程的概念,便于对比探索一元一次不等式概念。这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的类比和探究能力。

  问题2:

  将学生举出的一元一次方程中的等号改写成不等号。请学生观察有哪些共同的特征?

  通过以上问题归纳得到一元一次不等式的概念:只含一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

  【设计意图】问题2采用自主发现的教学方法引导学生从众多的不等式中,通过归纳其共同特点,得到一元一次不等式的概念,培养了学生观察、归纳和语言表达能力。

  问题3:学生举一元一次不等式的例子,学生判断。

  师:判断下列各式是否是一元一次不等式?

  ①②③④⑤

  ⑥

  【设计意图】此题让学生运用概念识别一元一次不等式,考察学生是否达成教学目标1。

  (二)、探索新知2

  通过前面的学习,我们知道解不等式的目的,就是将不等式变形成x>a或x

  【设计意图】让学生明白不管一元一次不等式有多复杂,最终都可以转化为x>a或x

  师:那怎么来解一元一次不等式呢?有具体的解法吗?请看下题

  (1)解方程解不等式

  2(1+x)=3 (1) 2(1+x)<3>

  学生回答不等式含有分母

  师:怎样变形使不等式不含分母?

  师生共同去分母解(2)题

  师:通过(1)、(2)题的学习你有什么发现?

  生:解一元一次不等式的解题步骤和解一元一次方程的解题步骤相同,都是:去分母,去括号,移项,合并同类项,系数化为1.

  师:在解(1)和(2)题的过程中注意些什么?

  生:系数化为1时,注意未知数系数的符号,未知数的系数是正数,则不等号的方向不变,若未知数的系数是负数,则不等号的方向改变。

  【设计意图】根据学生已经会解一元一次方程的实际情况,学生主动地参“探究——讨论——交流——总结”等数学活动,把一元一次方程和一元一次不等式进行了对比,实现了知识的自然迁移,使学生在自主探索和合作交流的过程中不知不觉地学到了新知识,理解并掌握了解一元一次不等式的一般步骤,教学重点得以基本达成,教学难点也取得相应突破。

  练习小明解不等式的过程如下,请找出错误之处,并说明错误的原因。

  解:2x-2+2<3x>

  2x-3x<-2+2

  -x<0>

  本节课你学会了些什么?

  解一元一次不等式和解一元一次方程有哪些相同和不同之处?

  【设计意图】通过问题引导学生再次回顾本节课。

  (四)布置作业

  教科书习题9.2第1,2,3,题

  (五)目标检测

  解一元一次不等式?,并把它的解集在数轴上表示出来.

  6、教学评价的设计

  本节课主要以问题串的形式贯穿整个教学过程,学生任务明确。教师在每一个教学环节中灰渗透了类别的学习思想,这使学生在学习新知的过程中利用正迁移,在轻松的氛围中完成了对新知的学习。课上回答的问题及解题在正确率以小组的得分的形式计入到小组教学成绩日常评比中。

  七年级下册数学教学设计 5

  教学目标

  1.会用代入法解二元一次方程组;

  2.体会解二元一次方程组的 “消元思想”和“化未知数为已知”的化归思想.

  3.通过对方程中未知数特点的观察和分析明,确解二元一次方程组的主要思路 是 “消元思想”和“化二元为一元”的化归思想.

  教学重难点

  1.熟练的用代入法解二元一次方程组。

  2.探索如何用代入法将“二元”转化为“一元”的消元过程。

  教学过程

  一、创设问题,引入新课

  1.问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜、负场数分别是多少?

  解:设胜场数是x则负的场数是20-x 列方程为:2x+(20-x)=38.解得x=18,则负的场数为

  20-x=20-18=2

  2.问题2:在上述问题中,我们可以设出两个未知数,列出二元一次方程组,若设胜的场数是x,负的场数是y,则

  x+y=20

  2x+y=38

  那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系呢?

  设计意图:通过创设同一问题分别列出一元一次方程与二元一次方程组 ,引导学生对两者关联认识,为后续代入消元法解二元一次方程作铺垫。

  二、学生探索,尝试解决

  交流问题2:可以发现,二元一次方程组中第一个方程x+y=20可的到y=20-x,将第2个方程2x+y=38中y换为20-x,这个方程就化为一元一次方程2x+(20-x)=38。

  归纳:

  二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一个未知数。这种将未知数的个数由多化少、逐一解决的思想方法,叫做消元思想。

  归纳小结:上面的解法,是把二元一次方程组中一个方程中的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的 解。这种方法叫做代入消元法,简称代入法。

  设计意图:通过交流问题2,引导学生将心中所想显现出来,代入消元法的步骤和功效逐步显现出来。

  三、典例交流,揭示规律

  例1:用代入法解二元一次方程组x=y+3(1)

  3x-8y=14(2)

  解:把①代入②,得3(y+3)-8y=14,解得y=-1。把y=-1代人①,解得x=2,所以这个方程组的解是 x=2,y=-1

  思考下列问题

  (1)选择哪个方程代入另一个方程?目的是什么?

  (2)为什么能代入?目的达到了吗?

  (3)只求出 y=-1 ,方程组解完了吗? 把y=-1 代入哪个方程求x的值较简单?

  (4)怎样知道你运算的结果是否正确?

  反思:需检验,将 x=2,y=-1分别代入方程①②,看方程的左右两边是否相等,可以口算,也可以在 草稿纸上验算。【例2】用代入法解二元一次方程组x-y=3(1)

  3x-8y=14(2)

  思考:

  (1)例1与例2有什么不同?(例1是用①直接代入②的,而例2的两个方程都不具备这样的条件。)

  (2)如何变形?(把其中一个方程变形为例1中①的形式。)

  (3)选择哪个方程变形较简单?(方程①中的x的系数为1,故可以将方程①变形得x=3+y。)

  (学生口述,教师板书完成)

  用代入消元法解二元一次方程组的步骤:

  (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来。(变)

  (2)把(1)中所得的方程代入另一个方程,消去一个未知数。(代)

  (3)解所得到的`一元一次方程,求得一个未知数的值。(求)

  (4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。(解)

  设计意图:进一步加强利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步骤提高学生的分析能力。

  四、变式训练,深化提高

  用代入法解下面方程组

  设计意图:通过学生演练展示,帮助学生巩固用代入法解二元一次方程组的步骤。

  五、师生共进,反思小结1、本节主要学习用代入法解二元一次方程组

  2、主要的解题思想方法是消元思想。

  3、代入消元法解二元一次方程组需要注意的问题。

  (1)用代入法解二元一次方程组时,常选用系数比较简单的方程变形,这有利于正确、简捷地消元。

  (2)由一个方程变形得到的只含有一个未知数的代数式必须代入到另一个方程中去,否则会出现一个恒等式。

  (3)方程组解的表示方法,应该用大括号把一对未知数的值连在一起,表示同时成立,不要写成x=?y=?

  六、布置作业:

  习题8.2 1,2题

  七、板书设计

  七年级下册数学教学设计 6

  一、教学目标

  1、理解一个数平方根和算术平方根的意义;

  2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;

  3通、过本节的训练,提高学生的逻辑思维能力;

  4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

  二、教学重点和难点

  教学重点:平方根和算术平方根的概念及求法。

  教学难点:平方根与算术平方根联系与区别。

  三、教学方法

  讲练结合。

  四、教学手段

  多媒体

  五、教学过程

  (一)提问

  1、已知一正方形面积为50平方米,那么它的边长应为多少?

  2、已知一个数的平方等于1000,那么这个数是多少?

  3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?

  这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的'下面作一个小练习,填空:

  1、(  )2=9;

  2、(  )2 =0.25;

  3、(  )2=0.0081。

  学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

  由练习引出平方根的概念。

  (二)平方根概念

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

  用数学语言表达即为:若x2=a,则x叫做a的平方根。

  由练习知:±3是9的平方根;

  ±0.5是0.25的平方根;

  0的平方根是0;

  ±0.09是0.0081的平方根。

  由此我们看到3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

  (   )2=—4

  学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。

  (三)平方根性质

  1、一个正数有两个平方根,它们互为相反数。

  2、0有一个平方根,它是0本身。

  3、负数没有平方根。

  (四)开平方

  求一个数a的平方根的运算,叫做开平方的运算。

  由练习我们看到3与—3的平方是9,9的平方根是3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

  (五)平方根的表示方法

  一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。

  练习:

  1、用正确的符号表示下列各数的平方根:

  ①26

  ②247

  ③0.2

  ④3

  ⑤

  解:①26的平方根是

  ②247的平方根是

  ③0.2的平方根是

  ④3的平方根是

  ⑤的平方根是

  七年级下册数学教学设计 7

  教学目标:

  1、知识与技能

  (1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。

  (2)理解有理数的意义,体会有理数应用的广泛性。

  2、过程与方法

  通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。

  重点、难点:

  1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。

  2、难点:对负数的理解以及正确地对有理数进行分类。

  教学过程:

  一、创设情景,导入新课

  大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?

  学生答后,教师指出:小学里学过的.数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的

  为了表示一个人、两只手、……,我们用到整数1,2,……

  为了表示“没有人”、“没有羊”、……,我们要用到0。

  但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。

  二、合作交流,解读探究

  1、某市某一天的温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。

  现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。

  同学们能举例子吗?

  学生回答后,教师提出:怎样区别相反意义的量才好呢?

  待学生思考后,请学生回答、评议、补充。

  教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是这样来的。

  现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量简明地表示出来了。

  让学生用同样的方法表示出前面例子中具有相反意义的量:

  高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;

  教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。

  2、给出新的整数、分数概念

  引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。

  3、给出有理数概念

  整数和分数统称为有理数。

  4、有理数的分类

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?

  待学生思考后,请学生回答、评议、补充。

  教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

  三、总结反思

  引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

  由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“—”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

  四、课后作业:课本P5习题1。1A第1、2、4题。

  七年级下册数学教学设计 8

  教学目标

  1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质

  过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点

  同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)=105.

  2.引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有即am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算?

  (2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?

  (4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用提高

  活动内容:

  1.完成课本“想一想”:a等于什么?

  2.通过一组判断,区分“同底数幂的`乘法”与“合并同类项”的不同之处。

  3.独立处理例2,从实际情境中学会处理问题的方法。

  4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。

  五、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  六、布置作业

  1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2.完成课本习题1.4中所有习题。

  七年级下册数学教学设计 9

  教学目标

  1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点

  深化对正负数概念的理解

  知识重点

  正确理解和表示向指定方向变化的量

  教学过程(师生活动)

  设计理念

  知识回顾与深化

  回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。这就是说:数的范围扩大了(数有正数和负数之分)。那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论。(数0既不是正数又不是负数,是正数和负数的分界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解。的这一层意义,也有助于对正负数的理解;且对数的.顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。这个问题只要初步认识即可,不必深究。

  问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。

  类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充。

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出。

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数。)

  本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题

  3,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

  定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助。由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识。通过实际例子的学习激发学生学习数学的兴趣。

【七年级下册数学教学设计】相关文章:

人教版七年级历史下册教学计划(精选18篇)02-14

七年级下册道德与法治教学计划(精选11篇)02-28

七年级下册社戏原文11-19

七年级下册英语阅读题07-20

五年级下册语文《刷子李》教学设计(通用10篇)04-28

五年级下册语文课文《白杨》教学设计(精选6篇)06-20

人教版七年级下册道德与法治教学计划2023(精选12篇)02-08

PPT教学设计07-30

北师大版七年级下册语文回忆鲁迅先生教案设计(精选14篇)03-13

七年级下册数学期中考试质量分析(通用16篇)01-30