初中辅导 百分网手机站

~七年级数学上期末试卷有答案和解释(2)

时间:2017-12-31 15:16:06 初中辅导 我要投稿

2016~2017七年级数学上期末试卷(有答案和解释)

  四、解答题(每小题7分,共28分)

  19.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

  (1)通过计算说明小虫是否回到起点P.

  (2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.

  考点: 有理数的加减混合运算;正数和负数.

  专题: 应用题.

  分析: (1)把记录到得所有的数字相加,看结果是否为0即可;

  (2)记录到得所有的数字的绝对值的和,除以0.5即可.

  解答: 解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),

  =5﹣3+10﹣8﹣6+12﹣10,

  =0,

  ∴小虫能回到起点P;

  (2)(5+3+10+8+6+12+10)÷0.5,

  =54÷0.5,

  =108(秒).

  答:小虫共爬行了108秒.

  点评: 此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.

  20.化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.

  考点: 整式的加减—化简求值.

  专题: 计算题.

  分析: 原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.

  解答: 解:原式=3x2y﹣2x2y+6xy﹣3x2y+xy

  =﹣2x2y+7xy,

  由x=﹣1,y=﹣2,得原式=18.

  点评: 此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.

  21.定义新运算:对于任意有理数a,b,都有a※b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算,比如:2※5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.

  (1)求(﹣2)※3的值;

  (2)若3※x=5※(x﹣1),求x的值.

  考点: 解一元一次方程;有理数的混合运算.

  专题: 新定义.

  分析: (1)原式利用题中的新定义化简,计算即可得到结果;

  (2)已知等式利用题中的新定义化简,求出解即可得到x的值.

  解答: 解:(1)(﹣2)※3=(﹣2)×(﹣2﹣3)+1=﹣2×(﹣5)+1=10+1=11;

  (2)由3※x=5※(x﹣1),得到3(3﹣x)+1=5(5﹣x+1)+1,

  解得:x=10.5.

  点评: 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.

  22.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.

  考点: 角平分线的定义.

  专题: 计算题.

  分析: 根据角平分线的定义先求∠BOC的度数,即可求得∠BOD,再由∠BOD=3∠DOE,求得∠BOE.

  解答: 解:∵∠AOB=90°,OC平分∠AOB

  ∴∠BOC= ∠AOB=45°(3分)

  ∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°

  ∠BOD=3∠DOE(6分)

  ∴∠DOE=15°(8分)

  ∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°(10分)

  故答案为75°.

  点评: 本题主要考查角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.

  五、解答题(每小题8分,共16分)

  23.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?

  考点: 一元一次方程的应用.

  专题: 应用题.

  分析: 设x张制盒身,则可用(150﹣x)张制盒底,那么盒身有16x个,盒底有43(150﹣x)个,然后根据一个盒身与两个盒底配成一套罐头盒就可以列出方程,解方程就可以解决问题.

  解答: 解:设x张制盒身,则可用(150﹣x)张制盒底,

  列方程得:2×16x=43(150﹣x),

  解方程得:x=86.

  答:用86张制盒身,64张制盒底,可以正好制成整套罐头盒.

  点评: 解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.

  24.如图,已知O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.

  (1)写出图中互补的角;

  (2)求∠DOE的度数.

  考点: 余角和补角;角平分线的定义.

  分析: (1)根据如果两个角的和等于180°(平角),就说这两个角互为补角进行分析即可;

  (2)根据角平分线的定义可得∠COD= ∠AOC,∠COE= .再根据∠AOB=180°可得答案.

  解答: 解:(1)∠AOC∠BOC,∠AOD与∠BOD,∠COD与∠BOD,∠BOE与∠AOE,∠COE与∠AOE;

  (2)∵OD是∠AOC的平分线,

  ∴∠COD= ∠AOC,

  ∵OE是∠COB的平分线,

  ∴∠COE= .

  ∴∠DOE=∠COD+∠COE= = ∠AOB,

  ∵∠AOB=180°,

  ∴∠DOE=90°.

  点评: 此题主要考查了补角,以及角平分线定义,关键是掌握两个角的和等于180°(平角),就说这两个角互为补角.

  六、解答题(每小题10分,共20分)

  25.龙马潭公园门票价格如下:

  购票张数 1﹣50张 51﹣100张 100张以上

  每张票价 10元 8元 6元

  七年级2个班共100人计划本周末去公园游玩.已知“七•一”班40多人、不足50人,两个年级各自以班为单位去购票,应付890元.

  (1)两个班各多少人?

  (2)两个班作为一个团体购票,最多能省多少钱?

  (3)若“七•一”班单独去,应该怎样购票才最省钱?

  考点: 一元一次方程的应用.

  分析: (1)首先设“七.一”班有x人,则“七.二”班有(100﹣x)人,由题意得等量关系:一班x人的费用+二班(100﹣x)人的费用=890元,根据等量关系列出方程即可;

  (2)两个班作为一个团队购票,最少购买101张,可按每张6元计算,共花费606元,再用890﹣606即可;

  (3)“七•一”班单独去,人数不够50人,可买51张票,花费51×8元,也比45×10花费少.

  解答: 解:(1)设“七.一”班有x人,则“七.二”班有(100﹣x)人,

  由题意得;10x+8(100﹣x)=890,

  解得x=45,

  答:“七.一”班45人,“七.二”班55人;

  (2)解:由题得,两个班作为一个团队购票费用=101×6=606(元),

  则能省的费用=890﹣606=284(元);

  (3)解:按照45人买,费用=45×10=450(元),

  按照51人买,费用=51×8=408(元),

  答:按照51人买是最省钱的,可以节省42元.

  点评: 此题主要考查了一元一次方程的应用,主要是消费问题,关键是正确理解题意,弄清楚消费方式,再设出未知数,列出方程.

  26.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

  (1)写出数轴上点B表示的数 ﹣6 ,点P表示的数 8﹣5t (用含t的代数式表示);

  (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?

  (3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.

  考点: 一元一次方程的应用;数轴;两点间的距离.

  分析: (1)根据已知可得B点表示的数为8﹣14;点P表示的数为8﹣5t;

  (2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;

  (3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.

  解答: 解:(1)∵点A表示的数为8,B在A点左边,AB=14,

  ∴点B表示的数是8﹣14=﹣6,

  ∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,

  ∴点P表示的数是8﹣5t.

  故答案为:﹣6,8﹣5t;

  (2)设点P运动x秒时,在点C处追上点Q,

  则AC=5x,BC=3x,

  ∵AC﹣BC=AB,

  ∴5x﹣3x=14,

  解得:x=7,

  ∴点P运动7秒时追上点Q.

  (3)线段MN的长度不发生变化,都等于7;理由如下:

  ∵①当点P在点A、B两点之间运动时:

  MN=MP+NP= AP+ BP= (AP+BP)= AB= ×14=7,

  ②当点P运动到点B的左侧时:

  MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7,

  ∴线段MN的长度不发生变化,其值为7.

  点评: 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.

【2016~2017七年级数学上期末试卷(有答案和解释)】相关文章:

1.2016-2017八年级数学上册期末试卷(含答案和解释)

2.2016~2017七年级数学上期末试卷(带答案)

3.2016~2017七年级数学上期末试卷(答案)

4.2016~2017七年级数学上期末试卷(带答案)

5.2016~2017七年级数学上册期末试卷

6.2016~2017七年级数学上期末试卷

7.2016~2017学期七年级数学上册期末试卷

8.2016-2017七年级数学上期末试卷