- 相关推荐
2017年材料领域十大创新点
在过去的2016年,新材料的科研和产业发展都发生了一系列变化。那么,下面是小编为大家整理今年的材料领域十大创新点,欢迎大家阅读浏览。
力学超材料应用前景广阔
“超材料(metamaterial)”指的是一些具有人工设计的结构并呈现出天然材料所不具备的超常物理性质的复合材料。这些超常性能主要是由其精细的微观结构,而非组成成分导致的。光子超材料是以往超材料领域最主要的研究方向,能够通过微观结构的设计而体现出负折射率等自然界不存在的特性。密歇根大学的研究则实现了一种具有特殊力学性能的超材料,即材料表面软硬质地可以根据受力情况转换。施加轻微的压力可以在不损坏或削弱材料本身的情况下,改变表面刚度几个数量级。
这种材料制造的火箭可以在发射时保持刚性、降落时变软以实现重复利用;自行车轮胎可以在骑行时自动变换硬度,以适合任何路况;汽车在发生事故时方向盘可以及时软化保护乘客,不再需要额外的安全气囊。力学超材料的发明也为超材料的发展提供了新的方向。
仿生材料创意无穷
仿生材料涵盖的材料种类千差万别,但模仿、超越生物体材料的性能始终是仿生材料研究的核心思想,并且多年以来产生了大量成果。近期又有多种新型仿生材料出现:模仿蝉翼表面纳米锥结构研发出了具有优秀抗雾能力的纳米织构材料;首次合成了强度及韧性超过生物软骨、皮肤的合成水凝胶;受到植物种子的启发,通过操作微结构来控制热处理中的各向异性收缩而实现自成形的陶瓷材料。可以预见在各类材料领域,都有可能产生许多具有奇特性能的新型仿生材料。
新型半导体材料多样化发展
随着以传统硅基半导体材料为基础的超大规模集成电路的性能逐渐逼近物理极限,摩尔定律逐渐显露出失效的趋势。为了打破即将到来的瓶颈、推动电子信息产业的持续进步,近年来新的半导体材料始终是材料领域的研发热点之一。以往的第三代半导体材料,以及石墨烯开创的二维半导体材料都曾被广泛关注。
2016年,来自不同机构的科研人员又贡献了数种全新的、具有应用潜力的新型半导体材料。美国犹他州大学的科研人员发现的二维氧化锡(SnO)是有史以来第一种稳定的P型(带正电荷的“空穴”运动)二维半导体材料。“石墨烯之父”安德烈·海姆(AndreGeim)发现的超薄硒化铟(InSe)则具有相当大的带隙,室温下的电子迁移率达到 2,000 cm2/Vs,远远超过了硅,在更低温度下,这项指标还会成倍増长。德国慕尼黑工业大学的科研人员则发现了一种柔性的无机半导体材料SnIP,具有类似于DNA分子的双螺旋形,体现出了极强的柔韧性,可以反复折弯而不断裂。这种材料能够体现出类似于砷化镓(GaAs)的电子性能,而且热稳定性更高、原料价格低廉、几乎没有毒性。
钙钛矿型太阳能电池材料稳定性获突破
有机-无机杂化钙钛矿结构的太阳能电池在2009年被首次报道,在2013年被Science被评为十大科技进展之一。这种新型的太阳能电池材料可以以薄膜形态工作,并且具有高光电效率,因此自诞生之日起就被业界重点关注。经过近6年的发展,这类太阳能电池的光电效率就从3.8%稳定提高到了22%以上,同传统硅太阳能电池串联后甚至可以达到30%,并且仍有进步空间。2016年,对一直困扰着相关产品实用化的稳定性问题的研究取得了里程碑式的重大突破,新产品被认为“可以在室外放置25年”。这一突破是钙钛矿太阳能电池实用化进程中的一大步。
此外,有机-无机混合钙钛矿材料具有的高色纯度、低非辐射复合率和可调带隙等特点还使其还有望用于LED照明领域。
国内企业进军高等级碳纤维市场
碳纤维具有非常优异的物理性质和化学性质,被广泛用于航空航天、交通工具、新能源装备、工程建设、体育休闲等领域。长期以来,我国碳纤维产业规模较小,同国外先进企业差距明显,进口产品占整个市场销量的80%以上。尤其是航空航天、工业应用等高端产品市场,进口产品占有率甚至达到95%,且长期处于被禁运的窘境。
目前,国内T300级和T700级碳纤维产品质量已达到国外同类产品水平。2016年,哈尔滨天顺化工科技开发公司宣布继去年成功实现低成本T700碳纤维量产后,又利用自产千吨线生产的原丝,再次突破低成本T800级碳纤维生产技术,产品的拉伸强度、拉伸模量等各项指标均达到日本T800级碳纤维技术水平。中复神鹰碳纤维公司的千吨级T800原丝生产线也投入生产。这些成果打破了国外禁运的限制,加速了国产碳纤维的进口替代步伐。
石墨烯产品的应用场景进一步丰富
石墨烯问世以来,其神奇性能被多个产业领域所关注,大量的潜在应用不断出现。除了传统的电池电极改性、柔性触控屏外,石墨烯的新应用方向还在不断出现,潜在市场空间不断拓宽:利用其超高强度,全球第一辆在车身中添加了石墨烯材料的汽车和自行车分别在英国问世;应用了石墨烯的超薄、高灵敏度的红外传感器有望将原本价值20,000欧元的CMOS传感器的价格降至10欧元;一种新型扬声器摒弃了传统的电磁激励振动的原理,利用超多孔石墨烯基结构凝胶的快速冷热变化带动空气振动发出声音,能够产生更高的声压。相信石墨烯会在许多其他意想不到的领域得到应用。
智能纤维带动传统行业转型
在我国,纺织行业一向被视为典型的传统产业,早年更一度是压缩落后产能的标杆性行业。“智能纤维”的发展则给这一行业带来了新的升级路径和市场空间。智能纤维是指能够感知外界环境或内部状态所发生的变化,并能做出响应的纤维。不同智能纤维的性能可能差距极大,例如相变纤维能够通过吸/放热量来实现对温度的调节;记忆纤维能够在特定环境下恢复原始形状;凝胶纤维能够对温度、pH值、光照、压力等条件做出体积或形态方面的响应;电子纤维能够导电以及消除静电等。各种各样的智能纤维能够赋予织物各种奇特的性能,甚至使衣服也实现功能化、信息化,例如能够将人体运动能量转化为电能并给手机充电的裤子、具有显示功能的衣服等。这将为整个纺织行业带来一次革命性的发展机遇。
拓扑超导材料奠定量子计算基础
超导材料的研究已经持续了数十年,期间经历过多次高潮和沉寂。拓扑超导在2006年被发现以来,迅速成为凝聚态物理界新的研究热点。近日,我国科学家又首次发现了铁基高温超导材料中的一种新型一维拓扑边界态。拓扑超导体体内是有能隙的超导体,表面能够产生一种被称为Majorana费米子的无能隙态。据理论预测,Majorana费米子可以用于量子计算,因此对拓扑超导材料的研究将直接关系到未来计算机的发展。
气凝胶逐步走向应用
气凝胶是密度最低的固体材料,曾长期出现在各类科技产品榜单中。主要作为隔热材料的气凝胶商业化产品已经出现十多年,但价格始终居高不下,因此主要应用于航天、军工、核能等尖端领域,市场份额十分有限,仅占整个隔热材料市场的几个百分点。
随着技术进步,气凝胶产品的性价比逐渐上升,冶金、石化、建材、热力管网等工业市场正在逐渐打开,近年来气凝胶市场的复合增长率已经达到了36.4%。业内预计在未来十年左右我国将迎来工业和建筑保温材料的一次全面替换,而气凝胶作为一种革命性的隔热材料会因此形成数百亿元规模的潜在国内市场。此外气凝胶在吸附催化、吸音隔音、绝缘、储能、海水淡化、药物缓释、体育器材等消费品领域的应用也值得期待。
金属氢后续发展值得关注
近日,美国科学家成功将氢气压缩制成固态、可导电的“金属氢”,率先达成了全球多个团队多年以来的研究目标,摘得了这一高压物理学的“圣杯”。此前,金属氢被认为在木星等大天体的内核中存在,地球内是不存在的。金属氢的能量密度高达218kJ/g,是TNT炸药(4.65kJ/g)的约50倍,有望用于火箭燃料等用途,同时在290k(16.85℃)的高温下还能显示出了超导现象。实验室中利用特殊处理的金刚石材料制造出了495GPa的极端的高压环境才制造出这一物质。尽管后来“金属氢消失”的新闻又引起了广泛的争议,但金属氢的研究本身仍然是值得长期关注的。
【材料领域十大创新点】相关文章:
人力资源管理的十大创新思维10-19
街舞的十大种类07-29
常用十大翻译技巧05-08
中考十大健康心态06-19
留学意大利的十大优势09-09
好丈夫十大标准02-14
山西旅游十大景点08-22
创业型人才的十大素质02-08
销售人员的十大必备心态10-14
咸阳十大旅游景点04-25