考研备考 百文网手机站

考研数学复习备考提高做题速度的窍门

时间:2021-06-11 19:05:36 考研备考 我要投稿

考研数学复习备考提高做题速度的窍门

  对很多同学来说,考研数学是一个困难,数学拉分较大,在复习的一定提高做题的速度。下面是为大家准备的考研数学复习提高做题速度的方法,欢迎大家前来阅读。

考研数学复习备考提高做题速度的窍门

  考研复习提高数学做题速度的七个窍门

  ►提速窍门有哪些

  一、熟悉基本的解题步骤和解题方法

  解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。

  二、审题要认真仔细

  对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

  有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

  三、认真做好归纳总结

  在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

  四、熟悉习题中所涉及的内容

  解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

  因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

  五、学会画图

  画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

  因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

  六、先易后难,逐步增加习题的难度

  人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

  我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

  七、限时答题,先提速后纠正错误

  很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。这个过程对提高书写速度和思考效率都有较好的作用。当你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。

  ►做完题如何总结

  一、分析条件和结论的联系

  解完题后,要思考题目涉及了哪些知识点,各已知条件之间是怎样深化和联系的,有哪些条件的应用方式是以前题目中没有出现过的,条件和结论是怎样联系的,求得的结果与题意或实际生活是否相符。通过这样的思考可使我们清楚题目的背景,促使我们进行大胆探索,进而发现规律,激发创造性思维。

  二、体会数学方法和思想

  解题后,要注意思考所解题目运用的是那一种数学方法,渗透了什么数学思想,以达到举一反三、触类旁通的目的。常用的数学方法主要有:配方法、换元法、待定系数法、定义法、数学归纳法、参数法、反证法、构造法、分析与综合法(10)特例法、类比与归纳法。经常进行这样的思考和分析,有利于对知识的深刻理解和运用,提高知识的迁移能力。

  三、一题多解与多题一解

  在解题时不要仅满足与解决了题目,还要考虑有无其他解法。经常尝试多种解法,可以锻炼我们思维的发散性,培养我们综合运用所学知识解决问题的能力和不断创新的意识。思考解决这道题目的方法还可以解决那些题目。这些题目背景可能千差万别,但解决时所用的数学方法是一样的。这样的思考能帮助我们看清题目的本质,大大提高解题能力。

  四、题目的变化与拓展

  解完一道题目,还可以对它进行适当的变化和拓展。主要可以改变题目条件,包括条件的加强与条件的减弱,条件与结论的交换等。改变题目的结论,主要是结论的深化和延伸。一题多变,有利于开阔眼界,拓宽解题思路,提高应变能力,有效地预防思维定势的负面影响。

  五、错误的总结与记录

  解题后,要思考题中易混易错的地方,总结预防错误的经验和犯错误的教训,有必要的要做好错题记录。

  把一道题目做好,充分利用好题目的训练功能,久而久之,你就会体会到“题不在多而在精”的道理。

  考研数学5类高分答题技巧

  一、分段得分

  对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。

  鉴于这一情况,考试中对于难度较大的题目采用“分段得分”的策略实为一种高招儿。“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。

  1.对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。

  2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

  二、缺步解答

  如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。

  三、跳步答题

  解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

  由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。

  也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

  四、退步解答

  “以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的.结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

  五、辅助解答

  一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。

  书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真—学习认真—成绩优良—给分偏高。

  有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是一种能力。

  考研数学强化复习注意四方面

  一、注意基本概念、基本方法和基本定理的复习掌握

  首先,复习基础知识要扎实,还要有扩展的意识,这一点在数学学习中一直存在。对教材上的每一个大纲规定的考试知识点均需深入理解,融会贯通,此时在看或学这些知识点的时候可以做一做书后相应的练习题以加深理解。

  这一步是为以后进一步复习打基础的阶段,务必要认真进行。

  结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。

  分析表明,考生失分的一个重要原因就是对基本概念、基本定理,理解不准确,基本解题方法没有掌握。因此,首轮复习必须在掌握和理解数学基本概念、基本定理、重要的数学原理、重要的数学结论等数学基本要素上下足工夫,如果不打牢这个基础,其他一切都是空中楼阁。

  二、加强练习,充分利用历年真题,重视总结、归纳解题思路、方法和技巧

  数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和运算。

  三、开始进行综合试题和应用试题的训练

  数学考试中有一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度相对较大。在首轮复习期间,虽然它们不是重点,但也应有目的地进行一些训练,积累解题经验,这也有利于对所学知识的消化吸收,彻底弄清有关知识的纵向与横向联系,转化为自己的东西。

  往年的真题一定要反复做,当然时间需掌握好,一般应放在复习完全部的教材知识之后与强化训练之后各进行若干次。真题体现了大纲所规定的考试宗旨,但某一年的真题并不能完全覆盖大纲规定的所有考点,所以往年的真题做得越多越好。

  四、突出重点

  高等数学是考研数学的重中之重,所占分值较大,需要复习的内容也比较多。主要内容有:

  1)函数、极限与连续:主要考查分段函数极限或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

  2)一元函数微分学:主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法则求不定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理以及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。

  3)一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

  4)多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数、方向导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

  6)多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序;

  7)微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法

  跨章节、跨科目的综合考查题,近几年出现的有:微积分与微分方程的综合题;求极限的综合题等。

  线性代数的重要概念包括以下内容:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化。

  线性代数的内容纵横交错,环环相扣,知识点之间相互渗透很深,因此不仅出题角度多,而且解题方法也是灵活多变,需要在夯实基础的前提下大量练习,归纳总结。

  概率论与数理统计是考研数学中的难点,考生得分率普遍较低。与微积分和线性代数不同的是,概率论与数理统计并不强调解题方法,也很少涉及解题技巧,而非常强调对基本概念、定理、公式的深入理解。其考点如下:

  1)随机事件和概率:包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。

  2)随机变量及其概率分布:包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。

  3)二维随机变量及其概率分布:包括多维随机变量的概念及分类;二维离散型随机变量联合概率分布及其性质;二维连续型随机变量联合概率密度及其性质;二维随机变量联合分布函数及其性质;二维随机变量的边缘分布和条件分布;随机变量的独立性;两个随机变量的简单函数的分布。

  4)随机变量的数字特征:随机变量的数字期望的概念与性质;随机变量的方差的概念与性质;常见分布的数字期望与方差;随机变量矩、协方差和相关系数。

  5)大数定律和中心极限定理,以及切比雪夫不等式。


【考研数学复习备考提高做题速度的窍门】相关文章:

初级会计备考提高做题速度窍门09-20

提高数学做题速度的方法06-26

如何提高数学做题速度07-01

高考支招:物理复习提高做题速度策略06-20

新GRE数学提高做题速度的要点12-12

数学做题怎么提高速度08-28

考研数学复习做题的方法12-06

考研数学复习的做题方法12-07

考研数学如何提高做题质量12-12