考研资讯 百文网手机站

考研数学冲刺历年的真题命题规律

时间:2021-06-10 15:37:12 考研资讯 我要投稿

考研数学冲刺历年的真题命题规律

  都知道考研复习很重要的一点是要研究真题,真题本身就是一套试卷模板,不但可以展示出考试试题会有的样子。小编为大家精心准备了考研数学冲刺历年的真题指南,欢迎大家前来阅读。

考研数学冲刺历年的真题命题规律

  考研数学冲刺历年的真题指导

  ▶重视计算

  计算能力可以说是现在考研的第一能力。20xx-20xx年的题的计算量都比较大,良好的计算习惯,同学们要从打草稿开始。大家在复习的过程中要克服满足于知晓运算过程眼高手低的毛病,要真正动手计算,在实践中提高计算能力,这一点希望要引起大家的重视。

  计算,是命题专家这两年一直强调一个点,就是说考研数学考试的计算,不是简单的数字计算,是对概念和算理的一个考察,同学们计算上的共性,一个是计算能力弱,第二个是我们觉得计算没有找到好方法,以致于算得慢,做得烦。这一点需要大家注意。

  ▶三基本

  70%的题是考察三基本。数学基础知识的考察要求既全面又突出重点,注意层次,重点知识是学习支撑体系的主要内容,考察时要达到较高的比例并要达到必要的深度。重点内容重点考,还要达到一定的深度。

  在20xx年的真题中,大家可以看到考试中心比较强调基础的。在数一数三的题当中有一个公用大题十分是同济教材六版88页的定理的证明,这是比较基础的,直接考教材中定理。这个题的得分率,数一只有0.5,数三0.42,说明其实考的并不理想。所以现阶段同学们复习还要注重核心的,基础的内容。

  再比如说利用泰勒公式求极限,这一届命题组是很稳定的,每年必考的这种问题。那么即便是数三的同学也要注意,泰勒公式可能是了解的。但是这是求极限的一种核心的方法,这个题用泰勒公式做显然是简单的,2015年数一数三这个题也是利用泰勒公式,核心方法重点考察,重复考察,所以这一点。

  ▶应用必考

  继续加强应用性的考察,应用性是数学学科的特点。解答数学应用题是分析问题和解决问题能力的高层次的反应,反应出考生的创新意识和实践能力,所以实践中应该有所体现。2015年试卷中数二的物理应用得分率是0.319,数三一个经济应用,这个还是比较常见的,得分率只有0.488。可见同学们对应用的重视还是不够的。物理应用很多年没有出现了,考一下得分率比较低,所以数一数二的同学应该重视的是物理应用与几何应用。数三同学应该重视的是经济应用与几何应用,这一点希望大家要加强。

  ▶注重本质,注意定理的适用条件

  强调数学考察三基,注重对概念本质的考察,考察大家对数学的理解和掌握,淡化对特殊的结题技巧的考察,往往注重定理的结题和应用,往往不看定理的前提,这是不注意的地方。比如说在一点存在导数,不能用罗贝塔法则,这个法则是在这一点的零域内,这需要辨析,这就可以拉开差距。

  ▶客观题的得分率低

  基本上每年阅卷都会发现,数三的填空题的得分率比大题还来得低,数一数二也是如此。所以客观题、小题的得分率要重视,毕竟这个题要么四分,要么零分,三个小题相当于一个大题。客观题做的时候也要注意是有特殊的方法的。比如说抽象的问题,一般的问题我们可以找特例处理。

  ▶全面复习,杜绝应试的倾向

  从大家的作答题情况来看,常见试题和知识点的得分情况比较好;对大纲中要求的,以前考试中出现频率比较低的试题和内容的得分情况不好,说明同学们有一种急功近利应试想法。这一点希望考高分的同学要注意了,是要全面复习。

  比如说给大家看几个例子。2013年数一的时候考了一个空间解析几何的大题,这个题得分率希望是0.289,是当年得分率最低几个题之一,因为前面的卷子中空间解析几何都不出大题的。考纲中仔细看一下,同学们现在要回归考纲。考纲中解析几何部分并不是都是要求不高的,也有理解和掌握的内容。

  建议对于要考高分的同学,原来评论比较低,但是在考纲中又级别比较高,在原增题中出现过的,还是要会。每年都会有这种类型的题。比如说2014年数三,考了一个类似于证明的问题,这是比较少的,又是概念性的考察,强调的概念,得分率只有0.5。

  再比如2014年的数一数三,线性代数出现了负惯性指数,这个内容很多年没有出现了,就是杜绝这种应试的倾向。2014年数一数三这两个题,这证明两个矩阵相似,证明两个矩阵相似的一般的判别方法在教材中比较少,真题中也比较少,难度只是0.386,考试情况并不理想。

  考研数学高数最常考的题型

  ▶第一:求极限

  无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛必达法则、分离因子、重要极限等中的几种方法,有时考生需要选择其中简单易行的组合完成题目。另外,分段函数有的点的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!

  ▶第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式

  证明题不能说每年一定考,但基本上十年有九年都会涉及。等式的证明包括使用4个微分中值定理,1个积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用是一个难点,但考查的概率不大。

  ▶第三:一元函数求导数,多元函数求偏导数

  求导问题主要考查基本公式及运算能力,当然也包括对函数关系的'处理能力。一元函数求导可能会以参数方程求导、变现积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。

  另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。

  ▶第四:级数问题

  常数项级数(特别是正项级数、交错级数)的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。

  ▶第五:积分的计算

  积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对考生来说数学主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的反用,对称性的使用等。

  ▶第六:微分方程问题

  解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。

  考研数学证明题解答步骤

  ▶1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论

  知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  ▶2.借助几何意义寻求证明思路

  一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

  ▶3.逆推法

  从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。


【考研数学冲刺历年的真题命题规律】相关文章:

考研数学冲刺真题的命题规律12-15

考研数学冲刺阶段历年真题和命题规律解析11-24

考研数学历年真题的命题方向12-07

考研历史学历年命题规律和冲刺攻略11-16

考研数学复习如何利用历年真题12-07

考研数学利用好历年真题的方法12-20

考研数学历年真题的运用策略11-23

考研数学复习真题是冲刺复习重点11-15

考研数学冲刺如何复习真题题型12-08