考研数学备考成功的复习要诀
对于历年考研数学真题来看,考试内容多、知识面广、综合性强等特点而让考生望而生畏。小编为大家精心准备了考研数学备考成功的复习攻略,欢迎大家前来阅读。
考研数学备考成功的复习秘诀
第一、打好基础
只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。近几年数学答卷的分析来看,考生失分的重要原因不是说考题有多么难,更多的是对基本概念、定理记不全、记不牢、理解不准确,基本解题方法掌握不好而造成的失分。因此,考生们数学复习必须打好第一步的基础,每年考研数学试题中都有60%以上的题目都在考查基础知识的理解与掌握,所以一定要重视基础。但是很多同学不能够重视这一点,总是好高骛远,一味寻求技巧或者是抠难题,以为这样才是提高数学成绩的途径。其实,考研数学中大部分是中挡题和容易题,所谓的20%的比较有难度的题目,其难度不过是简单题目上的进一步综合,并不是说有那么难。所以,同学们最重要的还是打好基础!
第二、脚踏实地做题
只看不做,一做就错,这是很多考生存在的问题,总以为看会了,知道了方法,自己就会做了,可是真正做起来的时候才发现不是那么回事。数学是一门严谨的学科,容不得半点纰漏,在我们还没有建立起来完备的知识结构之前,只看解题不亲自动手做的复习必然难以把握题目中的重点。况且,通过动手练习,我们还能规范答题模式,提高解题和运算的熟练程度。正式考试时三个小时那么大的题量,本身就是对计算能力和熟练程度的考察,而且现在的阅卷都是分步给分的,怎么作答有效果,这些都要通过自己不断的摸索去体会。因此,为了取得好的数学成绩,建议同学们必须大量练习,充分利用历年试题,重视总结归纳解题思路、套路和经验。
第三、题前题后多思考
多做题就能提高成绩,很多同学这样认为,其实不然,做题的同时更要思考,举一反三。做题,是要把整个知识通过题目加深理解并有机的串联起来。数学的学习离不开做题,但从来不等于做题,抽象是数学的重要特征之一,在复习过程中,我们通过作题,发散开来对抽象知识点的内涵和外延进行深入理解,这是非常必要的。做题的思路,必然应该是从理解到作题归纳再回到理解。因此,考生们要时刻目标明确、深入思考才识提高数学思维和数学能力的关键。
考研数学备考的关键
一、注重基础知识,对于概念、公式、定理、推论的理解要透彻、扎实
数学最需要强调的是基础,但很多同学不重视基础的学习,反而只是忙着做题,想通过题海战术取得考研数学高分。这就像是不会走路的孩子总想着直接跑步一样,即便是投入再大的精力,当然也无法起到预期的效果。
数学试卷80%的题目都是基础题目,真正需要冥思苦想的偏题、难题只是少数。同学们回忆一下自己做题时,先不谈解题方法,题目中涉及到的知识点是否都清楚的了解?要用到的公式、定理是否提笔就能写出来?如果做不到,那我们怎么能进入下一步寻找解题方法并写出完整的解题过程呢?事实上,大部分同学经常是在遇到题目中涉及知识点的问题时需要去翻书查找,请考生明确这样一个事实——考场上没有课本。所以,要想游刃有余的拿稳那80%的基础分,考生一定要先把基础弄的扎扎实实的,进而再进行解题能力和解题速度的训练。
考生可以通过以下方法打好数学基础:
(1)把数学复习辅导书上总结好的知识点认真掌握住。不管什么版本的复习辅导书,全面、详细讲解的知识点,例题讲解当中总结出的解题技巧和方法、推导出的公式定理等,这些都要重点记忆。
(2)数学的复习也要做笔记。由于复习辅导书上的知识点过于详细,在以后的复习中,就没有时间去系统的看了,而且可能其中大部分你已经掌握了。这就需要在这一轮复习时把辅导书中精华、自己掌握的不好的地方以及考试常考的知识点总结在一个本子上,这样再复习的时候就可以直接看这个本子,可以节省下很多时间,提高效率,而且学习的间歇可以随时拿出来记一记、背一背。还有,这些基础知识如果一段时间不看就会有些生疏,用的时候拿不准,所以要每天都携带在身上,就像英语单词小册子一样,要经常温习。
二、勤动脑、多动手
很多同学学习数学时就喜欢看例题,看别人做好的题目,看别人分析、总结好的解题方法、步骤。只这样是远远不够的,只是一味的被动的接受别人的东西,就永远也变不成自己的东西。第一遍复习看教科书时必须自己做一些题。做题时,先不看答案,完全通过自己的能力做着试试,不管做到什么程度,起码你要先自己思考,只有启动自己的大脑,才会使知识得到更深入的'理解和掌握,才能真正成为自己的知识,也才会具有独立的解题能力。还有在做题时不要太轻易的选择放弃,不要想一会儿没有思路就去看答案,要勇于挑战自己,不要轻易投降,一定要仔细开动脑筋想过之后,实在不行再求助于外力。
很多人认为写步骤很浪费时间,长期依靠眼睛看,不写步骤,这样的结果就是造成自己的眼高手低,遇到题目不能够细心对待。而且很可能在考试的过程中即使遇到再简单的大题,也不能拿到全分。所以建议大家这一阶段也是养成良好的做题习惯的关键时期。
考研数学复习高数微分方程部分重点解析
一、微分方程
微分方程可视为一元函数微积分学的应用与推广。该部分在考试中以大题与小题的形式交替出现,平均每年所占分值在8分左右。常考的题型包括各种类型微分方程的求解,线性微分方程解的性质,综合应用。
对于该部分内容的复习,考生首先要能识别各种方程类型(一阶:可分离变量的方程、齐次方程、一阶线性方程、伯努利方程(数一、二)、全微分方程(数一);高阶:线性方程、欧拉方程(数一)、高阶可降阶的方程(数一、二)),熟悉其求解步骤,并通过足量练习以求熟练掌握;在此基础上还要具备数学建模的能力——能根据几何或物理背景,建立微分方程。
另外,有几点需提醒考生:
1. 解微分方程主要考查考生计算积分的能力,而实际应用则对考生的综合能力提出较高要求,考生需结合练习把“解方程”和“列方程”的能力练好。
2. 非基本类型的方程一般都可通过变量替换化为基本类型。
3. 考生需弄清常见的物理量、几何量与微分、积分的关系。
二、无穷级数
级数可视为微积分的综合应用。该部分是数一、数三的必考内容,分值约占10%。常考的题型有:常数项级数的收敛性,幂级数的收敛半径和收敛域,幂级数展开,幂级数求和,常数项级数求和以及傅里叶级数。其中幂级数是重点。
结合考试分析,建议考生从以下方面把握该部分内容:
1. 常数项级数
理解其收敛的相关概念并掌握各种收敛性判别法。
2. 幂级数
考试有三方面的要求:幂级数收敛域的计算,幂级数求和,幂级数展开。考生应通过一定量训练使自己具备这三方面的能力——给定幂级数,准确计算其收敛半径进而得到收敛域,能求其和函数,能将一个简单函数在指定点展开成幂级数。
3.傅里叶级数
考试出现频率和考试要求均较低,掌握傅里叶系数的求法,再了解狄利克雷定理的内容即可。
如何有效地复习考研数学?如果我们也视其为一道数学题,我想我们应该明白:我们要做微分运算——拿着放大镜把每个考点弄清,也要做积分运算——持续地投入,积跬步以至千里;我们要有严谨的态度——一张数表里有一个数不同结果就变了,还要有灵活的思维——于点、线、面,数、表、空间,常量、变量、随机变量间自由游弋;面对逝去的光阴不要悔恨——函数都可以不单调,人却要让过去决定未来吗,面对不如意的现状要接纳——作为考生,我们无权更改微分方程的初始条件,我们能做的是接受它,把题漂亮地解出来。
【考研数学备考成功的复习要诀】相关文章:
考研数学备考成功有哪些要诀11-15
考研数学备考的复习要点12-02
考研数学备考的复习攻略12-02
考研数学备考的复习规划12-04
考研数学备考复习的方法12-01
考研数学备考复习的禁忌12-16
考研数学备考的复习禁忌12-16
考研数学冲刺备考的复习指导12-11
考研数学复习备考的指南攻略12-12