考研资讯 百文网手机站

考研数学提高解题速率和正确率的方法

时间:2021-06-10 09:39:08 考研资讯 我要投稿

考研数学提高解题速率和正确率的方法

  我们在准备考研数学的复习时,需要找到提高解题速率和正确率的方法。小编为大家精心准备了考研数学提高解题速率和正确率的秘诀,欢迎大家前来阅读。

考研数学提高解题速率和正确率的方法

  考研数学提高解题速率和正确率的技巧

  如何使用书本知识

  看书是获得理论知识,要想考场上考出好成绩,必须经过大量的做题实践,只有经过大量的做题实践,才能熟练、自如的应用理论知识。做题有很多好处的,首先,通过做题来准确理解、把握基本概念、公式、结论的内涵和外延,并逐渐掌握它们的使用方法。单纯的看书,许多概念是无法掌握其精髓的,也不知道在什么情况下使用,如何使用。试卷上不需要考生默写某个概念或公式,而是用这些概念或公式解决问题,这种灵活运用公式的能力只有也只能通过做题来获得,所以考生必须做一定数目的题目。然后,题目做多了,做题才有思路。考研辅导专家提醒考生,数学的题目虽然千变万化,但基本结构却大体相同,题型也不会变化太大,题目的解答也有一定规律可寻,题目做的多了,自然而然就会迅速形成解题思路。

  提高解题速率和正确率

  题目做的多了,可以提高解题速率和正确率。选择题和填空题在数学考卷中所占的比重很大,这些题目的解答往往会"一失足成千古恨",稍不留神,一步做错就全军覆没。不能说只要考场上认真,仔细地做题就不会有"会做但做错"的情况出现,其实有些看似由于粗心引起的错误是由于考生之前没有碰到过这种错误,考生时大脑中意识不到要注意这些问题,所以这种错误是不能仅仅认真、仔细就可以避免得了的。考生平时做题时应积累和改正这些错误,并培养谨慎,细心的做题习惯,考场上就不会轻易犯这些错误了。

  另外,题目不需要做的太多,整天泡在题海中没有必要,只要掌握了需要掌握的知识点并能熟练应用即可。考研辅导专家提醒考生,大家一方面要做真题,另一方面要做难度适宜,覆盖面全,集中体现考纲要求的题目,数量自己把握。现在有一种题目是运用数学知识和方法解决实际问题,比如雪堆融化、压力计算、汽锤作功、海洋勘测、飞机滑行等,如果考生不习惯这种用数学方法解决实际问题的题目,那平时就应该加强训练。

  考研数学证做题数量质量与效率

  首先,题目的选择上,要广泛一些,各个名师的模拟题、复习题等都涉及一些。这是因为,每个人的出题思路是一定的,重点偏向及难易程度也差不多,做不同人编的题,有助于题型的广泛摄取和把握,只有题型见得多了,思路才能拓展开,而且各种难度的题目也都尝试过了,见到考试卷时才不会有太多措手不及的感觉,这就是通常所说的“普及性”。

  其次,做题的数量上,在你的能力范围内大量练习,但不必太多,尤其是到了复习的中后期阶段,主要精力应放在政治和专业课上面的时候,也就没有那么多时间去做数学题了。但也一定不要就把数学“放鸽子”了,因为数学不做就会手生,找不到感觉。大家一定要给自己安排好一个做题计划,比如说两天一套题或三天一套题,根据自己其他科目的复习情况以及此门课程的复习情况来定。最后,留一两套题在考前作为热身训练,不过不用在意那时做题打出的成绩,因为就要上考场了,好坏都没有多大的意义了,关键是用它来找找做题的感觉。

  最后,大家在复习过程中,一定要注意养成做题仔细、谨慎的习惯。粗心大意也是许多同学的一大难题。你想,题目明明会做,可答案偏偏不对,大题还好些,还能给你一些步骤分,小题就惨了,是一分不得的。所以,这一点也要引起高度的重视。一般来说有这个问题的同学有一个共性,就是在草稿纸上演算时,比较潦草,纸上经常是乱七八糟,想回过头查找一下某道题的计算过程,是很难的一件事。还有就是演算的时候不认真。针对这类型的同学来说,在使用草稿纸的时候,就要把纸利用的.整齐一些,写的也规整一些,书写认真一些,慢慢就能减少错误率了。

  考研数学应用题的类型

  1.函数的极值和最值模型

  函数的极值和最值的应用问题主要分为一元函数和多元函数的极值和最值的应用,解决这类问题的思路是:第一根据实际问题中的数量关系列出函数关系式及求出函数的定义域;第二利用求函数极值和最值的方法求解。

  例如:某厂家生产的一种产品同时在两个市场销售,售价分别为p1,p2;销售量分别为q1和q2;需求函数分别为q1=24-0.2p1,q2=10-0.05p2;总成本函数为C=35+40(q1+q2)。试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总利润是多少?

  分析:这是一个典型的二元函数求最值问题。首先要根据题意求出总利润函数:总利润=总收益-总成本;其次求出函数的定义域;最后根据二元函数求最值的方法求解即可。

  2.积分模型

  在积分的应用过程中关键要解决好两个问题:一是什么样的量可以用积分来表达;二是用什么样的积分表达,即确定积分区域和被积表达式。

  例如:某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功。设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为kk>0)。汽锤第一次击打将桩打进地下am。根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0

  问: (1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深?(注:m表示长度单位米)

  分析:本题属变力做功问题,可用定积分进行计算,而击打次数不限,相当于求数列的极限。

  3.微分方程模型

  应用微分方程解决实际问题,其实就是建立微分方程数学模型,通过建立微分方程、确定定解条件、求解及对解的分析可以揭示许多自然界和科学技术中的规律。应用微分方程解决具体问题时,首先将实际问题抽象,建立微分方程,并给出合理的定解条件;其次求解微分方程的通解及满足定解条件的特解;最后由所求得的解或解的性质,回到实际问题。

  例如:现有一质量为9000kg的飞机,着陆时的水平速度为700km/h。经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k=6.0×106)。问从着陆点算起,飞机滑行的最长距离是多少?注:kg表示千克,km/h表示千米/小时。

  分析:本题是以运动力学为背景的数学应用题,可通过利用牛顿第二定理,列出关系式后再解微分方程即可。

  4.概率模型

  关于概率论的应用题主要集中在古典概型、随机变量的分布以及随机变量的数字特征等方面。应用概率论的知识解决具体问题时,首先要分析实际问题,找出随机变量的关系及其分布;下来是列出它们的函数关系,利用概率论的有关知识求解。

  例如:设某企业生产线上产品的合格率为0.96,不合格产品中只有3/4的产品可进行再加工,且再加工的合格率为0.8,其余均为废品。已知每件合格品可获利80元,每件废品亏损20元,为保证该企业每天平均利润不低于2万元,问该企业每天至少应生产多少产品?

  分析:本题为概率论中的数学期望在经济中的应用,有关数字特征的应用题主要是随机变量函数的数学期望、方差等,求解这类问题的关键是找出函数关系.根据题设列出方程求解。


【考研数学提高解题速率和正确率的方法】相关文章:

考研数学如何提高解题速率和正确率12-07

如何提高数学解题正确率07-03

考研数学能提高解题能力的方法06-25

考研数学复习之提高解题能力的方法06-29

考研数学快速提高复习效率的解题方法12-16

考研数学的解题方法06-26

提高数学解题能力方法06-26

提高数学解题能力的方法06-25

考研数学的解题方法技巧06-25