考研数学冲刺阶段高效备考的方法
数学是研究生入学考试的重头戏,在研究生考试备考的冲刺阶段,需要掌握好复习的方法。小编为大家精心准备了考研数学冲刺阶段高效备考的秘诀,欢迎大家前来阅读。
考研数学冲刺阶段高效备考的攻略
一、要站在命题者的高度复习备考
最后复习阶段,最重要的就是要找出一条能串住所有知识点的线索来,保证一个知识点都不会遗漏。能把考试的内容串联在一起的最好线索就是考试大纲。但只有考试大纲是不够的,还要结合参考书中每一章节的内容提要一起复习,它是考试大纲的具体化。
站在命题者的高度来复习备考,首先,就要根据考试大纲掌握每一章包括哪些知识点,每一知识点包含哪些小点,每一点的具体内容是什么。其次,每复习一个知识点,都要从命题者的角度去想一想,他会不会据此知识点出题,出什么样的题型,以前见过什么类似的题型,能从哪个角度出题,能不能出反问题,会结合其他哪些知识点来出题。翻翻历年的考研真题,看看这个知识点在所有章节的题目里是怎样出现的,做题时是如何处理的。比如极限、导数、定义、积分上限函数、无穷小量阶的比较、积分中值定理、微分方程、切线这些知识点,经常与其他知识点综合在一起出题,大家复习时仔细比较分析一下,考试时就会胸有成竹了。
二、分配复习时间以成绩提高最快为原则
考研数学有三部分,即高等数学(微积分),线性代数和概率统计,其中数学二不考概率统计。在最后两周的时间内,应该多花一些时间去复习能尽快提高成绩的学科及自己尚未完全掌握的重要知识点,这样才能在最短的时间内产生最大的效益。
自己擅长的科目和题型不应再花太多时间。而自己不擅长的一些科目和题型,应多花时间去突击复习,成绩应该会较快提高。比如数学一中的线面积分,无穷级数,还有特征值、特征向量和实对称矩阵的对角化等等。概率统计中的二维随机变量和数理统计中的内容,多复习、多记忆也会收到很好效果的。
三、临阵磨枪与重心后移
中国有句俗话:“临阵磨枪,不快也光”。这就说明考前强化训练的重要性。考前两周做两到三套模拟题,对提高解题速度、激活所学知识非常关键,同时也可以在做题过程中查缺补漏,并探索适合于自己的考试答题的时间分配规律。
做模拟题不要斤斤计较分数的高低,主要是要熟悉考研试题的'特点。模拟题也可起到增加考试经验和查缺补漏的作用。 但是,仅靠做模拟题来查缺补漏是远远不够的。数学复习的最后阶段一定要重心后移,这是因为数学的考点、重点、难点大部分均在每本书的中间或最后几章,命制的综合题和大题也多数是在后面几章出现。
数学一关于高等数学部分的考试重点在定积分、重积分、线面积分、无穷级数等章,而数学二、三的高等数学(微积分)部分的考试重点在微分中值定理、定积分等后面几章。
复习线性代数最重要是向量的线性相关性、线性方程组、特征值与特征向量、二次型与正定矩阵等内容。这几章题型变化多,知识点的衔接与转换非常集中,便于命制综合题。
复习概率统计的重点是多维随机变量及其分布以及随机变量的数字特征。
四、进行有针对性的高效复习———综合题的解题策略
所谓综合题就是考查多个知识点,即把前后章节的知识综合起来进行考核的试题。这类题目要求考生要学会分析问题,抓联系、抓总结,切实掌握与知识点之间的联系,真正理解基本概念的实质,融会贯通各概念之间的内在联系,形成知识网来分析问题和解决问题。
数学考研试题大部分是复合型的。在复习高等数学时,一定要把极限论、微分学和积分学有机地结合起来,前后贯穿,灵活运用。在复习线性代数时,一定要以线性方程组为核心,前后融会贯通,灵活运用所学知识来分析问题和解决问题,不要将它们孤立割裂开来。比如行列式、矩阵、向量、线性方程组是线性代数的基本内容,它们不是孤立割裂的,而是相互渗透,紧密联系的。在复习概率统计时,考生要灵活运用所学知识,建立正确的概率摸型,综合运用极限、连续、导数、积分、广义积分、二重积分以及级数等知识去分析和解决实际问题,提高解综合题的能力。
五、挥洒自如,宠辱不惊,调整好应试心理
考前最后一段时间,特别是最后几天,记忆力特好,应充分利用。此时不宜再去复习具体的知识点,而应采取浮光掠影式的复习方式,应以轻松的心态,着眼于宏观的角度去发现和解决问题或快速地浏览一些特殊的题型,加深对其解题技巧的理解;或从头到尾翻一遍大纲和考研真题,在脑海里对其中每一个知识点留下最后的印象。 同时,对试题的难度和答题的方法要做到心中有数。
各种在考研复习中考生要做到的是掌握核心,即万变不离其宗,抓住其形变而神不变之处才能轻松成功。
考研数学试题特点分析及备考要点指南
一、数学试题特点剖析
1.综合度高,不仅有跨章节的知识点运用,更有跨学科的知识点运用。如《高数》,《线代》,《概率》的知识点穿插。
2.重视锻炼思维,并不注重计算,对知识点的灵活运用要求高。
3.整体知识覆盖面广,考察知识点的角度经典。
4.要求对数学知识综合运用能力强,解答题几乎不存在投机的可能。
5.真题的出题顺序是严格按照大纲编排顺序而安排。
6.《曲线,曲面积分》一章为《高数》的难点,也是测试的重点。
7.有些同学说中值定理的证明较难,可以把泰勒公式作为最后的杀手锏,大量题目都可以用其解决。
8.统计部分测试题型单一,好好总结一下,这部分送分的题目丢分实在可惜。
9.《线代》是一种全新的思维模式,光有空间想象能力是不够的,需要拓展自己的思维。
二、复习要点指南
1.找寻自己的薄弱环节,有针对性的进行巩固。
2.以点带面看到典型的题目,复习本章相关的所有知识点。
3.做题不在于多,而在于精。甚至可以对经典的题目隔段时间做上一遍,领会出题者意图达到贯通。
考研数学单选与证明题解题技巧
单选题经典解题技巧
1.推演法。提示条件中给出一些条件或者一些数值,你很容易判断,那这样的题就用推演法去做。推演法实际上是一些计算题,简单一点的计算题。那么从提示条件中往后推,推出哪个结果选择哪个。
2.赋值法。给一个数值马上可以判断我们这种做法对不对,这个值可以加在给出的条件上,也可以加在被选的4个答案中的其中几个上,我们加上去如果得出和我们题设的条件矛盾,或者是和我们已知的事实相矛盾。比方说2小于1就是明显的错误,所以把这些排除了,排除掉3个最后一个肯定是正确的。
3.举反例排除法。这是针对提示中给出的函数是抽象的函数,抽象的对立面是具体,所以我们用具体的例子来核定,这个跟我们刚才的赋值法有某种相似之处。一般来讲举的范例是越简单越好,而且很多考题你只要简单的看就可以看出他的错误点。
4.类推法。从最后被选的答案中往前推,推出哪个错误就把哪个否定掉,再换一个。我们推出3个错误最后一个肯定是正确的。后面三种方法有些相似之处,类推法这种方法是费时费力的,一般来讲我们不太用。
总结:经常进行自我总结,错题总结能逐渐提高解题能力。大家可以在学完每一章后,自己通过画图的形式回忆这章有哪些知识点,有哪些定理,他们之间有些什么联系,如何应用等;对做错的题分析一下原因:概念不清楚、定理用错了还是计算粗心?数学思维方法是数学的精髓,只有对此进行归纳、领会、应用,才能把数学知识与技能转化为分析问题、解决问题的能力,使解题能力“更上一层楼”。
证明题的解法与技巧
1.结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。
知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的 存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
2.借助几何意义寻求证明思路
一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及 y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
【考研数学冲刺阶段高效备考的方法】相关文章:
考研数学冲刺阶段如何高效备考12-08
考研数学冲刺高效备考的误区12-05
考研数学冲刺阶段的备考指南12-11
考研数学冲刺阶段备考的攻略12-12
考研数学冲刺阶段的备考建议12-22
考研数学冲刺阶段如何高效复习12-08
考研数学备考高效复习的方法12-22
考研数学冲刺阶段的备考复习指南12-08
考研数学冲刺备考阶段如何复习12-05