考研备考 百文网手机站

考研数学考试的试题都有哪些特点

时间:2021-06-10 11:48:22 考研备考 我要投稿

考研数学考试的试题都有哪些特点

  我们在进行考研数学的考试时,需要了解清楚试题都有哪些特点。小编为大家精心准备了考研数学考试试题要点,欢迎大家前来阅读。

考研

  考研数学考试试题特点

  无论是即将开始秋季阶段复习的18年考试的同学,还是19年才考试的同学,在复习考研数学的时候,需要首先了解考研数学的特点是什么。可能立马有人会蹦出来说,考研数学,那不就是大学学习的那些东西嘛,就是同济的第六版的高等数学、某某的线性代数、某某版本的概率论。然后按照之前的学习的复习就完全可以了,把书上的东西搞明白,考研就完全没有问题了。的确如果能够把书上的所有都搞明白,的确考研没有问题了,但面临一个问题,真的能够搞明白吗?

  随便举例子一个,现在同学们可能记忆最深刻的是洛必达法则,可能具体什么是洛必达法则不知道,但是大致有点影响是,求一个极限,不会的话,可以上下求导,然后再求极限,经过一个基础阶段的复习,同学们肯定能够掌握了洛必达法则,三个条件,而且是一个充分条件。那我接着说,同学们对泰勒公式的理解呢,好多18年考研的同学到现在可能都不完全知道泰勒公式,因为无论那一本课本上,泰勒公式都没有超过一节的内容,同学们基本上感觉这个不重要了,但是反观考研数学31年的真题,同学们自然会发现,考研在极限这儿,特别喜欢考查泰勒公式,而不是洛必达法则。

  所以无论是什么考研的,先必须知道考研考什么,知己知彼百战不殆,好多考生到上考场的时候也不太清楚考研数学考察的到底是些什么东西。

  考研数学的特点大致有:综合性比较强、题量大、基础、每年变动不大。

  首先说到综合性比较强:考研单单就考察的知识点来说,数一大约有400个左右,数二比较少,但是每个真题,都不会单单的考察一个知识点,而是会把知识点综合起来考察。比如高数里面的级数,就会综合极限的求解、导数的应用和积分的应用,而在积分里面又会涉及到很多的积分方法。再比如说,关于导数的应用,导数会应用到求极限中,洛必达法则和泰勒公式中都会用到求导;会应用到求积分的过程中,积分和求导本来就是相反的运算这个毫无疑问了;再有就是概率论中关于密度函数的求解同样会用到求导。从上面的例子同学们不难看出考研数学喜欢考察的往往是综合性强的题目,所以就会要求考生具备对考研数学的整体把握,能够了解每个知识点和其他知识点的结合。

  再者是题量大,这点不用多说,考研数学真题中有23个题目,其中9个大题,好多同学会有感触,就是每年有好多题目自己是会做的,但是就是没有时间了,导致分数不高,这个就要求考生的做题速度能够锻炼上了。所以考生在平时做题和学习的过程中一定要注重速度的锻炼,不要一个题目想起来了做三分钟,然后放下明天做。

  基础:从考研大纲的对学生的要求我们不难看出考研数学大部分考察的基础题目,但是为什么学生考不好呢,并不是说考的难,只是平时同学们复习和考试要求的是两张皮而已。

  所以同学们在复习的过程中,一定要注意这样几个原则,第一针对性要强,考研不要求的暂且就先放放,比如数二的同学就不需要学习概率了;第二一定要培养自己综合看待知识点的能力,综合应用知识的'能力;第三个就是要不断的提升自己的速度。

  考研数学必考题型:参数估计

  本章考研主要题型为:

  (1)参数的点估计:矩估计、极大似然估计估计量的评选标准(数一考查)

  (2)参数的区间估计:正态总体的区间估计(数一考查)

  矩估计的基本思想:由大数定律可知样本矩、样本矩的连续函数依概率收敛于相应的总体矩、总体矩的连续函数,由此可建立总体分布中未知参数满足的方程(组),解之可得总体未知参数的点估计。这种构造点估计量的方法称为矩估计法,求得的点估计称为矩估计量(值)其方法步骤如下:

  1.构建未知参数的方程,通过总体的原点矩来构造。

  2.解方程,解出未知参数。

  3.用样本矩代替总体矩,得未知参数的矩估计量(值)。

  极大似然估计法的基本思想:样本发生的可能性最大原则——即对未知参数进行估计时,在未知参数的变化范围内选取使“样本取此观测值”的概率最大的参数值作为未知参数的点估计。这样得到的矩估计值为最大似然估计值,相应的量为最大似然估计量。其方法步骤为:“造似然”求导数,找驻点得估计。

  1.构造自然函数,注意,离散总体和连续总体的似然函数不同。

  2.取对数。

  3.求导数找驻点得估计。

  注意,若似然方程无解,则必有导数大于或小于零,此时只要在未知参数的变化范围内找其右边界点或左边界点即可。

  估计量的评选标准:无偏性、有效性、一致性,掌握其概念即可。无偏估计考查较多。

  参数的区间估计:了解区间估计概念、掌握求置信区间的方法。求置信区间的一般方法步骤为:

  第一步,选枢轴量定分布;

  第二步,造大概率事件得不等式;

  第三步,解不等式得置信区间。

  以上是数一和数三对参数估计部分的全部考点,期望大家能熟练理解其思想和熟练掌握方法步骤,多练习,已达到熟练解题的要求。

  概率的题目题型比较固定,考生如若能掌握考试常见题型及解题基本方法,便能胸有成竹,自信满满的将概率这科拿下,考研数学三个科目中概率最易拿分,希望考生们一定将此科目满分拿下,切不可掉以轻心。

  考研数学应该如何复习

  高等数学

  高数第一章不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、两个重要极限、洛必达法则等等,还要总结求极限过程中常用到的转化、化简的方法。对函数的连续性的探讨也是考试的重点,这要求考生要充分理解函数连续的定义和掌握判断连续性的方法。

  对于导数和微分,其实重点不是给一个函数求导数,而是导数的定义,也就是抽象函数的可导性,理清连续、可导、可微之间的关系,分清一元与多元的异同。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,在求积分的过程中,一定要注意积分的对称性,利用分段积分去掉绝对值把积分求出来。中值定理一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于微分部分,隐函数的求导,复合函数的偏导数等是考试的重点。

  二重积分的计算,当然数学一里面还包括了三重积分,掌握积分区域具有可加性、二重积分对称性的应用、二重积分直角坐标和极坐标的变换、二重积分转换成累次积分计算这些知识点。另外还有曲线和曲面积分,这是数一必考的重点内容。一阶微分方程,掌握几个教材中的几种类型的求解就可以了。还有无穷级数,要掌握判别敛散性、幂级数的展开和求和常用的方法和技巧。

  线性代数

  线性代数考试题型不多,计算方法比较初等,但是往往计算量比较大,导致很多考生对线性代数感到棘手。从理论的角度出发,线性代数的很多概念和性质之间的联系很多,特别要根据每年线性代数的两道大题考试内容,找出所涉及到的概念与方法之间的联系与区别。例如向量组的秩与矩阵的秩之间的联系,向量的线性相关性与齐次方程组是否有非零解之间的联系,向量的线性表示与非齐次线性方程组解的讨论之间的联系,实对称阵的对角化与实二次型化标准形之间的联系等。掌握他们之间的联系与区别,对做线性代数的两个大题在解题思路和方法上会有很大的帮助。

  复习过程中,综合掌握“一条主线,两种运算,三个工具”。一条主线是解线性方程组,两种运算是求行列式、矩阵的初等行(列)变换,三个工具是行列式、矩阵、向量。其中,向量组线性相关性是难点,要理解记忆各条定理,理清其中关系,多做题巩固知识点。特征向量与二次型虽不难,但年年必考,计算能力要跟上,多做题才能提高正确率。

  概率论与数理统计

  概率论与数理统计课程的主要特点是概念和公式繁多,章节的关系松散,应用题比较抽象,所以复习时要注重这些概念的理解。第一、二章是基础,很少单独命题,经常结合后面的章节进行考察,但这两章要深刻理解,只有这部分内容透彻理解后面的内容才能容易掌握。概率部分要重点掌握的是二维随机变量的概率分布、边缘分布、条件分布、独立性等概念,要把定义和对应计算公式掌握的很熟练。另外,数学期望、方差、协方差、相关系数等数字特征的概念及计算公式也要重点复习,因为这几个概念是每年必考,并且主要考计算。

  最后,这部分难点是多维随机变量的函数的分布。这个考点最近几年每年必考,并且主要以大题的形式出现。虽然是难点,但是方法还是比较固定的,掌握每种题型的方法即可。大数定律和中心极限定理不是考试的重点,考纲要求是了解,所以只要掌握定理的条件和结论。数理统计部分主要围绕三大统计量分布,点估计是这部分内容的重难点,经常会考解答题。统计量的评选标准中的无偏估计要重点复习,有效性和相合性了解即可。区间估计和假设检验这么多年考的比较少,所以也是了解一下,找几个小题做一下就行了。


【考研数学考试的试题都有哪些特点】相关文章:

考研数学考试有哪些试题特点11-10

春的特点都有哪些特征02-10

颜真卿书法特点都有哪些01-26

达摩兰花的特点都有哪些12-11

宝塔诗的特点都有哪些11-24

月饼的特点都有哪些口味11-14

苗族的服饰特点都有哪些09-02

唐诗歌的特点都有哪些11-29

考研数学有哪些命题原则和试题特点11-07